51 resultados para Steroid Isomerases -- analysis -- genetics
Resumo:
An important question in developmental biology is how embryonic cell types are derived from a fertilized egg. To address this question, this thesis investigates the mechanisms by which the aboral ectoderm-specific Spec2a gene is spatially and temporally regulated during sea urchin embryogenesis. The Spec2a gene of the sea urchin Strongylocentratus purpuratus has served as a valuable maker to understand the basis of lineage-specific gene activation and the role of transcription factors in cell fate specification. The hypothesis is that transcription factors responsible for cell type-specific gene activation are key components in the initial cell specification step. The Spec2a gene, which encodes a small cytosolic calcium-binding protein, is expressed exclusively in aboral ectoderm cell lineages. The 1516-bp control region of the Spec2a gene contains a 188-bp enhancer element required for temporal activation and aboral ectoderm/mesenchyme cell expression, while an unidentified element upstream of the enhancer represses expression in mesenchyme cells. Using an enhancer activation assay, combined with site-directed mutagenesis, I showed that three TAATCC/T sites within the enhancer are responsible for enhancer activity. Mutagenizing these sites and a fourth one just upstream abolished all activity from the Spec2a control region. A 77-bp DNA fragment from the Spec2a enhancer containing two of the TAATCC/T sites is sufficient for aboral ectoderm/mesenchyme cell expression. A cDNA encoding SpOtx, an orthodenticle-related protein, was cloned from S. purpuratus and shown to bind with high affinity to the TAATCC/T sequences within the Spec2a control region. SpOtx transcripts were found initially in all cells of the cleaving embryo, but they gradually became restricted to oral ectoderm and endoderm cells, suggesting that SpOtx might play a role in the initial temporal activation of the Spec2a gene and most likely has additional functions in the developing embryo. To reveal the broader biological functions of SpOtx, I injected SpOtx mRNA into living sea urchin eggs to determine what effects overexpressing the SpOtx protein might have on embryo development. SpOtx mRNA-injected embryos displayed dramatic alterations in development. Instead of developing into pluteus larvae with 15 different cell types, uniform epithelia balls were formed. These balls consisted of a thin layer of squamous cells with short cilia highly reminiscent of aboral ectoderm. Immunohistochemical staining and RT-PCR demonstrated that the SpOtx-injected embryoids expressed aboral ectoderm markers uniformly, but showed very weak or no expression of markers for non-aboral ectoderm cell types. These data strongly suggested that overexpression of SpOtx redirected the normal fate of non-aboral ectoderm cells to that of aboral ectoderm. These results show that SpOtx is involved in aboral ectoderm differentiation by activating aboral ectoderm-specific genes and that modulating its expression can lead to changes in cell fate. ^
Resumo:
The purpose of this research is to develop a new statistical method to determine the minimum set of rows (R) in a R x C contingency table of discrete data that explains the dependence of observations. The statistical power of the method will be empirically determined by computer simulation to judge its efficiency over the presently existing methods. The method will be applied to data on DNA fragment length variation at six VNTR loci in over 72 populations from five major racial groups of human (total sample size is over 15,000 individuals; each sample having at least 50 individuals). DNA fragment lengths grouped in bins will form the basis of studying inter-population DNA variation within the racial groups are significant, will provide a rigorous re-binning procedure for forensic computation of DNA profile frequencies that takes into account intra-racial DNA variation among populations. ^
Resumo:
To identify more mutations that can affect the early development of Myxococcus xanthus, the synthetic transposon TnT41 was designed and constructed. By virtue of its special features, it can greatly facilitate the processes of mutation screening/selection, mapping, cloning and DNA sequencing. In addition, it allows for the systematic discovery of genes in regulatory hierarchies using their target promoters. In this study, the minimal regulatory region of the early developmentally regulated gene 4521 was used as a reporter in the TnT41 mutagenesis. Both positive (P) mutations and negative (N) mutations were isolated based on their effects on 4521 expression.^ Four of these mutations, i.e. N1, N2, P52 and P54 were analyzed in detail. Mutations N1 and N2 are insertion mutations in a gene designated sasB. The sasB gene is also identified in this study by genetic and molecular analysis of five UV-generated 4521 suppressor mutations. The sasB gene encodes a protein without meaningful homology in the databases. The sasB gene negatively regulates 4521 expression possibly through the SasS-SasR two component system. A wild-type sasB gene is required for normal M. xanthus fruiting body formation and sporulation.^ Cloning and sequencing analysis of the P52 mutation led to the identification of an operon that encodes the M. xanthus high-affinity branched-chain amino acid transporter system. This liv operon consists of five genes designated livK, livH, livM, livC, and livF, respectively. The Liv proteins are highly similar to their counterparts from other bacteria in both amino acid sequences, functional motifs and predicted secondary structures. This system is required for development since liv null mutations cause abnormality in fruiting body formation and a 100-fold decrease in sporulation efficiency.^ Mutation P54 is a TnT41 insertion in the sscM gene of the ssc chemotaxis system, which has been independently identified by Dr. Shi's lab. The sscM gene encodes a MCP (methyl-accepting chemotaxis protein) homologue. The SscM protein is predicted to contain two transmembrane domains, a signaling domain and at least one putative methylation site. Null mutations of this gene abolish the aggregation of starving cells at a very early stage, though the sporulation levels of the mutant can reach 10% that of wild-type cells. ^
Resumo:
Heterotrimeric GTP-binding proteins, G proteins, are integral components of eukaryotic signaling systems linking extracellular signals to intracellular responses. Through coupling to seven-transmembrane helix receptors, G proteins convey primary signaling events into multi-leveled cascades of intracellular activity by regulating downstream enzymes, collectively called effectors. The effector enzymes regulated by G proteins include adenylyl cyclase, cAMP phosphodiesterase, phospolipase C-β, mitogen-activated protein kinases, and ion channels. ^ Neurospora crassa is a multicellular, filamentous fungus that is capable of both asexual and sexual reproduction by elaboration of specialized, developmentally controlled structures that give rise to either asexual or sexual spores, respectively. N. crassa possesses at least three heterotrimeric Gα proteins (GNA-1–3) and one Gβ subunit (GNB-1). GNA-1 was the first microbial protein that could be classified in the Gαi superfamily based on its amino acid identity and demonstration that it is a substrate for ADP-ribosylation by pertussis toxin. ^ Experiments were designed to identify the signal transduction pathways and the effector enzymes regulated by GNA-1. Targeted gene-replacement of gna-1 revealed that GNA-1 controls multiple developmental pathways including both asexual and sexual reproduction, maintenance of growth, and resistance to osmotic stress. The Gαi and Gαz members of the Gαi superfamily negatively regulate adenylyl cyclase activity in mammalian cells; therefore, adenylyl cyclase and cAMP levels were measured in Δgna-1 strains and also in strains that were deleted for both gna-1 and gna-2, a second Gα in N. crassa shown to have overlapping functions with GNA-1. Direct measurements of adenylyl cyclase activity revealed that GNA-1, but not GNA-2, was responsible for GTP-stimulated adenylyl cyclase activity in N. crassa. Furthermore, anti-GNA-1 IgG could specifically inhibit GTP-stimulated adenylyl cyclase activity in wild-type strain extracts. These studies also provided evidence that N. crassa possesses feedback mechanisms that control steady-state cAMP levels through indirect regulation of cAMP-phosphodiesterase activity; mutations in gna-1 and gna-2 were additive in their effect on lowering cAMP-phosphodiesterase activity under growth conditions where steady-state cAMP levels were normal but GTP-stimulated adenylyl cyclase activity was reduced 90% in comparison to control strains. ^ Genetic and biochemical epistasis experiments utilizing a Δ gna-1 cr-1 mutant suggest that GNA-1 is essential for female fertility in a cAMP-independent pathway. Furthermore, deletion of gna-1 in a cr-1 background exacerbated many of the defects already observed in the cr-1 strain including more severe growth restriction and developmental defects. However, deletion of gna-1 had no effect on the increased thermotolerance of cr-1, which has been attributed to loss of cAMP. cr-1 possesses GNA-1 protein, and crude membrane fractions from this strain reconstituted GTP-stimulated adenylyl cyclase activity in Δgna-1 membrane fractions. These studies provide direct evidence for the involvement of Gα proteins in the regulation of adenylyl cyclase activity in eukaryotic microbes. ^
Resumo:
Sox9 is a Sry-related HMG-domain containing transcription factor. Lines of evidence suggest that Sox9 has a potential role in skeletal development. During mouse development, Sox9 is predominantly expressed in all chondroprogenitors and differentiated chondrocytes, throughout the deposition of cartilage matrix. Mutations in one allele of SOX9 in humans result in campomelic dysplasia (CD), a skeletal dysplasia. syndrome characterized by the bowing of long bones. Moreover, Sox9 binds to and activates chondrocyte-specific enhancers in Col2a1 and Col11a2 genes. To further investigate the function of Sox9 in chondrogenesis, we analyzed chimeras derived from Sox9 heterozygous and homozygous null embryonic stem (ES) cells. In mouse chimeras, Sox9 −/− cells were excluded from all cartilages and did not express chondrocyte-specific genes. The segregation occurred during mesenchymal condensation. No cartilages developed in teratocarcinomas derived from Sox9 −/− ES cells. Mice heterozygous for the Sox9 mutation died neonatally and exhibited skeletal abnormalities resembling those of the CD patients. The Sox9 +/− mutants had a cleft palate and hypoplasia of scapula, pelvis and other skeletal structures derived by endochondral ossification. Bending of the radius, ulna and tibia cartilage was prominent at embryonic day 14.5 (E14.5). At E12.5 many pre-cartilaginous condensations were already defective. Advanced ossification was observed and the hypertrophic zone was enlarged in the growth plates, suggesting that Sox9 also regulates hypertrophic chondrocyte differentiation. Our results identify Sox9 as the first essential regulator of chondrocyte differentiation, which plays multiple roles in chondrogenesis. ^
Resumo:
Pitx2, a paired-related homeobox gene that is mutated in human Rieger Syndrome, plays a key role in transferring the early asymmetric signals to individual organs. Pitx2 encodes three isoforms, Pitx2a, Pitx2b and Pitx2c. I found that Pitx2c was the Pitx2 isoform for regulating left-right asymmetry in heart, lung and the predominant isoform in guts. Previous studies suggested that the generation of left-right asymmetry within individual organs is an all or none, random event. Phenotypic analysis of various Pitx2 allelic combinations, that encode graded levels of Pitx2c, reveals an organ-intrinsic mechanism for regulating left-right asymmetric morphogenesis based on differential response to Pitx2c levels. The heart needs low Pitx2c levels, while the lungs and duodenum require higher doses of Pitx2c. In addition, the duodenal rotation is under strict control of Pitx2c activity. Left-right asymmetry development for aortic arch arteries involves complex vascular remodeling. Left-sided expression of Pitx2c in these developing vessels implied its potential function in this process. In order to determine if Pitx2c also can regulate the left-right asymmetry of the aortic arch arteries, a Pitx2c-specific loss of function mutation is generated. Although in wild type mice, the direction of the aortic arch is always oriented toward the left side, the directions of the aortic arches in the mutants were randomized, showing that Pitx2c also determined the left-right asymmetry of these vessels. I have further showed that the cardiac neural crest wasn't involved in this vascular remodeling process. In addition, all mutant embryos had Double Outlet Right Ventricle (DORV), a common congenital heart disease. This study provided insight into the mechanism of Pitx2c-mediated late stages of left-right asymmetry development and identified the roles of Pitx2c in regulation of aortic arch remodeling and heart development. ^