65 resultados para PI3-kinase
Resumo:
Chromosome segregation is a critical step during cell division to avoid aneuploidy and promote proper organismal development. Correct sister chromatid positioning and separation during mitosis helps to achieve faithful transmission of genetic material to daughter cells. This prevents improper chromosome partitioning that can potentially result in extrachromosomal fragments, increasing the tumorigenic potential of the cells. The kinetochore is a protenaicious structure responsible for the initiation and orchestration of chromosome movement during mitosis. This highly conserved structure among eukaryotes is required for chromosome attachment to the mitotic spindle and failure to assemble the kinetochore results in aberrant chromosome segregation. Thus elucidating the mechanism of kinetochore assembly is important to have a better understanding of the regulation that controls chromosome segregation. Our previous work identified the C. elegans Tousled-like kinase (TLK-1) as a mitotic kinase and depletion of TLK-1 results in embryonic lethality, characterized by nuclei displaying poor mitotic chromosome alignment, lagging chromosome, and chromosome bridges during anaphase. Additionally, previous studies from our group revealed that TLK-1 is phosphorylated independently by Aurora B at serine 634, and by CHK-1 at threonine T610. The research presented herein reveals that both phosphorylated forms of TLK-1 associate with the kinetochore during mitosis. Moreover, by systematic depletion of kinetochore proteins, I uncovered that pTLK-1 is bona fide kinetochore component that is located at the outer kinetochore layer, influencing the microtubule-binding interface. I also demonstrated that TLK-1 is necessary for the kinetochore localization of the microtubule interacting proteins CLS-2 and LIS-1 and I show that embryos depleted of TLK-1 presented an aberrant twisted kinetochore pattern. Furthermore, I established that the inner kinetochore protein KNL-2 is an in vitro substrate of TLK-1 indicating a possible role of TLK-1 in regulating centromeric assembly. Collectively, these results suggest a novel role for the Tousled-like kinase in regulation of kinetochore assembly and microtubule dynamics and demonstrate the necessity of TLK-1 for proper chromosome segregation in C. elegans.
Resumo:
Men with localized prostate cancer (PCa) have a 100% five-year survival rate, but this rate drops to 33% for men with metastatic disease. A better understanding of the metastatic process is needed to develop better therapies for PCa. Aberrant activation of protein tyrosine kinases, including Src Family Kinases (SFKs) contribute to metastasis through numerous functions, one of which leads to increased expression of cytokines, such as IL-8. However, the relationship between Src activity and IL-8 regulation is not completely understood. In cell line models, I determined that IL-8 activates Src and in turn Src activates IL-8 demonstrating a feed forward loop contributing to the migration and invasion of PCa cells. However, IL-8 is also produced by tumor-associated stromal cells. In bone marrow derived stromal cells (HS5), I demonstrated a feed forward loop occurs as was observed in tumor cells. HS5 conditioned media increased Src activity in PCa cells. By silencing IL-8 in HS5 cells, Src activity was decreased to control levels in PCa cells as was migration and invasion. Thus, stromal cells producing IL-8 contribute to metastatic properties of PCa by a paracrine mechanism. To examine the effect of stromal cells on tumor growth and metastatic potential of PCa in vivo, I mixed HS5 and PCa cells and co-injected them intraprostatically. I determined that tumor growth and metastases were increased. By silencing IL-8 in HS5 cells and co-injecting them with PCa cells intraprostatically, tumor growth and metastases were still increased relative to injection of PCa cells alone, but decreased relative to co-injections with PCa cells and HS5 cells. These studies demonstrated: (1) a feed forward loop in both tumor and stromal cells, whereby IL-8 activates Src, derepressing IL-8 expression in PCa cells in vitro; (2) stromal produced IL-8 activates Src and contributes to the migration and invasion of PCa cells in vitro; and (3) stromal produced IL-8 is responsible, in part, for increases in PCa tumor growth and metastatic potential. Together, these studies demonstrated that IL-8-mediated Src activity increases the metastatic potential of PCa and therapeutic agents interfering with the IL-8/SFK signaling axis may be useful for prevention and treatment of metastases.
Resumo:
Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.
Resumo:
Akt (also known as protein kinase B) serves a central regulator in PI3K/Akt signaling pathways to regulate numerous physiological functions including cell proliferation, survival and metabolism. Akt activation requires the binding of Akt to phospholipid PIP3 on the plasma membrane and subsequent phosphorylation of Akt by its kinases. Growth factor-mediated membrane recruitment of Akt is a crucial step for Akt activation. However, the mechanism of Akt membrane translocation is unclear. Protein ubiquitination is a significant posttranslational modification that controls many biological functions such as protein trafficking and signaling activation. Therefore, we hypothesize that ubiquitination may be involved in Akt signaling activation. We have demonstrated that Akt could be conjugated with non-proteolytic K63-linked ubiquitination by TRAF6 ubiquitin E3 ligase. This modification on Akt was required for membrane recruitment, phosphorylation and activation of Akt in response to growth factor stimulation. The human cancer-associated Akt E17K mutant exhibited an increase in K63-linked ubiquitination, which contributes to the enrichment of membrane recruitment and phosphorylation of Akt. Thus, we conclude that K63-linked ubiquitination is a critical step for oncogenic Akt activation and also involved in human cancer development. Notably, the process of protein ubiquitination can be reversed by deubiquitinating enzymes (DUBs), which play a critical role to terminate signaling activation induced by ubiquitination. To further investigate how ubiquitination cycles regulate Akt activation, we have identified that CYLD as a DUB for Akt, and CYLD inhibited growth factor-induced ubiquitination and activation of Akt. Under serum-depletion condition, CYLD interacts with Akt and keep Akt under inactive state by directly removing K63-linked ubiquitination of Akt. CYLD disassociates with Akt upon growth factor stimulation, thereby allowing E3 ligases to induce ubiquitination and activation of Akt. We also demonstrated that CYLD deficiency promoted cancer cell proliferation, survival, glucose metabolism and human prostate cancer development. Therefore, we conclude that CYLD plays a critical role for negatively regulating Akt signaling activation through deubiquitination of Akt. In summary, this study delineated the important mechanism of cycles of ubiquitination and deubiquitination of Akt in regulating membrane translocation and activation of Akt, and TRAF6 and CYLD as central switches for these processes.
Resumo:
Objective: The primary objective of our study was to study the effect of metformin in patients of metastatic renal cell cancer (mRCC) and diabetes who are on treatment with frontline therapy of tyrosine kinase inhibitors. The effect of therapy was described in terms of overall survival and progression free survival. Comparisons were made between group of patients receiving metformin versus group of patients receiving insulin in diabetic patients of metastatic renal cancer on frontline therapy. Exploratory analyses were also done comparing non-diabetic patients of metastatic renal cell cancer receiving frontline therapy compared to diabetic patients of metastatic renal cell cancer receiving metformin therapy. ^ Methods: The study design is a retrospective case series to elaborate the response rate of frontline therapy in combination with metformin for mRCC patients with type 2 diabetes mellitus. The cohort was selected from a database, which was generated for assessing the effect of tyrosine kinase inhibitor therapy associated hypertension in metastatic renal cell cancer at MD Anderson Cancer Center. Patients who had been started on frontline therapy for metastatic renal cell carcinoma from all ethnic and racial backgrounds were selected for the study. The exclusion criteria would be of patients who took frontline therapy for less than 3 months or were lost to follow-up. Our exposure variable was treatment with metformin, which comprised of patients who took metformin for the treatment of type 2 diabetes at any time of diagnosis of metastatic renal cell carcinoma. The outcomes assessed were last available follow-up or date of death for the overall survival and date of progression of disease from their radiological reports for time to progression. The response rates were compared by covariates that are known to be strongly associated with renal cell cancer. ^ Results: For our primary analyses between the insulin and metformin group, there were 82 patients, out of which 50 took insulin therapy and 32 took metformin therapy for type 2 diabetes. For our exploratory analysis, we compared 32 diabetic patients on metformin to 146 non-diabetic patients, not on metformin. Baseline characteristics were compared among the population. The time from the start of treatment until the date of progression of renal cell cancer and date of death or last follow-up were estimated for survival analysis. ^ In our primary analyses, there was a significant difference in the time to progression of patients receiving metformin therapy vs insulin therapy, which was also seen in our exploratory analyses. The median time to progression in primary analyses was 1259 days (95% CI: 659-1832 days) in patients on metformin therapy compared to 540 days (95% CI: 350-894) in patients who were receiving insulin therapy (p=0.024). The median time to progression in exploratory analyses was 1259 days (95% CI: 659-1832 days) in patients on metformin therapy compared to 279 days (95% CI: 202-372 days) in non-diabetic group (p-value <0.0001). ^ The median overall survival was 1004 days in metformin group (95% CI: 761-1212 days) compared to 816 days (95%CI: 558-1405 days) in insulin group (p-value<0.91). For the exploratory analyses, the median overall survival was 1004 days in metformin group (95% CI: 761-1212 days) compared to 766 days (95%CI: 649-965 days) in the non-diabetic group (p-value<0.78). Metformin was observed to increase the progression free survival in both the primary and exploratory analyses (HR=0.52 in metformin Vs insulin group and HR=0.36 in metformin Vs non-diabetic group, respectively). ^ Conclusion: In laboratory studies and a few clinical studies metformin has been proven to have dual benefits in patients suffering from cancer and type 2-diabetes via its action on the mammalian target of Rapamycin pathway and effect in decreasing blood sugar by increasing the sensitivity of the insulin receptors to insulin. Several studies in breast cancer patients have documented a beneficial effect (quantified by pathological remission of cancer) of metformin use in patients taking treatment for breast cancer therapy. Combination of metformin therapy in patients taking frontline therapy for renal cell cancer may provide a significant benefit in prolonging the overall survival in patients with metastatic renal cell cancer and diabetes. ^
Resumo:
Long-term potentiation (LTP) is a rapidly induced and long lasting increase in synaptic strength and is the leading cellular model for learning and memory in the mammalian brain. LTP was first identified in the hippocampus, a structure implicated in memory formation. LTP induction is dependent on postsynaptic Ca2+ increases mediated by N-methyl-D-aspartate (NMDA) receptors. Activation of other postsynaptic routes of Ca2+ entry, such as voltage-dependent Ca2+ channels (VDCCs) have subsequently been shown to induce a long-lasting increase in synaptic strength. However, it is unknown if VDCC-induced LTP utilized similar cellular mechanisms as the classical NMDA receptor-dependent LTP and if these two forms of LTP display similar properties. This dissertation determines the similarities and differences in VDCC and NMDA receptor-dependent LTP in area CA1 of hippocampal slices and demonstrates that VDCCs and NMDA receptors activate similar cellular mechanisms, such as protein kinases, to induce LTP. However, VDCC and NMDA receptor activated LTP induction mechanisms are compartmentalized in the postsynaptic neuron, such that they do not interact. Consistent with activation properties of NMDA receptors and VDCCs, NMDA receptor and VDCC-dependent LTP have different induction properties. In contrast to NMDA-dependent LTP, VDCC-induced potentiation does not require evoked presynaptic stimulation or display input specificity. These results indicate that there are two different routes of postsynaptic Ca2+ which can induce LTP and the compartmentation of VDCCs and NMDA receptors and/or their resulting Ca2+ increases may account for the distinction between these LTP induction mechanisms.^ One of the molecular targets for postsynaptic Ca2+ that is required for the induction of LTP is protein kinases. Evidence for the role of protein kinase activity in LTP expression is either correlational or controversial. We have utilized a broad range and potent inhibitors of protein kinases to systematically examine the temporal requirement for protein kinases in the induction and expression of LTP. Our results indicate that there is a critical period of persistent protein kinase activity required for LTP induction activated by tetanic stimulation and extending until 20 min after HFS. In addition, our results suggest that protein kinase activity during and immediately after HFS is not sufficient for LTP induction. These results provide evidence for persistent and/or Ca2+ independent protein kinase activity involvement in LTP induction. ^
Resumo:
Signal transduction pathways operative in lymphokine activated killer (LAK) cells during execution of cytolytic function have never been characterized. Based on ubiquitous involvement of protein phosphorylation in activation of cytolytic mechanisms used by CTL and NK cells, it was hypothesized that changes in protein phosphorylation should occur when LAK encounter tumor targets. It was further hypothesized that protein kinases would regulate LAK-mediated cytotoxicity. Exposure to either SK-Mel-1 (melanoma) or Raji (lymphoma) targets consistently led to increased phosphorylation of two 65-kD LAK proteins pp65a and -b, with isoelectric points (pI) of 5.1 and 5.2 respectively. Increased p65 phosphorylation was initiated between 1 and 5 min after tumor coincubation, occurred on Ser residues, required physical contact between LAK and tumors, correlated with target recognition, and also occurred after crosslinking Fc$\gamma$RIIIA in the absence of tumors. Both pp65a and -b were tentatively identified as phosphorylated forms of the actin-bundling protein L-plastin, based on pI, molecular weight, and cross-reactivity with specific antiserum. The known biochemical properties of L-plastin suggest it may be involved in regulating adhesion of LAK to tumor targets. The protein tyrosine kinase-specific inhibitor Herb A did not block p65 phosphorylation, but blocked LAK killing of multiple tumor targets at a post-binding stage. Greater than 50% inhibition of cytotoxicity was observed after a 2.5-h pretreatment with 0.125 $\mu$g/ml Herb A. Inhibition occurred over a period in pretreatment which LAK were not dependent upon IL-2 for maintenance of killing activity, supporting the conclusion that the drug interfered with mobilization of cytotoxic function. Granule exocytosis measured by BLT-esterase release from LAK occurred after coincubation with tumors, and was inhibited by Herb A LAK cytotoxicity was dependent upon extracellular calcium, suggesting that granule exocytosis rather than Fas ligand was the principal pathway leading to target cell death. The data indicate that protein tyrosine kinases play a pivotal role in LAK cytolytic function by regulating granule exocytosis, and that tumor targets can activate an adhesion dependent Ser kinase pathway in LAK resulting in phosphorylation of L-plastin. ^
Resumo:
Overexpression and/or amplification of HER2/neu is frequently detected in many human cancers. Activation of p185 tyrosine kinase can be achieved by point mutation, overexpression, deletion, and heterodimerization with other class I receptors. In this study I investigated the signal transduction pathways mediating the oncogenic signal of the point mutation-activated rat p185. I demonstrated that tyrosine phosphorylation of Shc and formation of Shc/Grb2 complex correlated to the transformation of NIH3T3 cells caused by the point mutation-activated rat HER2/neu. Furthermore, I observed that association with Shc was severely impaired by deletion of most of the major autophosphorylation sites of the point-mutated p185. The truncated p185 product, however, fully retained its ability to transform NIH3T3 cells, induce Shc tyrosine phosphorylation and Shc/Grb2 complex formation. These results suggest that tyrosine phosphorylation of Shc which allows formation of Shc/Grb2 complex may play an important role in cell transformation induced by the point mutation-activated p185, and that stable binding to mutant p185 may not be necessary for Shc to mediate this signaling pathway.^ Recent studies have suggested that formation of the complex containing Sos, Grb2 and Shc is important in coupling receptor tyrosine kinases to the Ras signaling pathway. To clarify the role of this trimer in the oncogenic signaling of the activated p185, I set out to interfere with the protein-protein interactions in Shc/Grb2/Sos complex by introducing Grb2 mutants with deletions in either amino- ($\Delta$N-Grb2) or carboxyl- ($\Delta$C-Grb2) terminal SH3 domains into B104-1-1 cells derived from NIH3T3 cells that express the point mutation-activated HER-2/neu. I found that the transformed phenotypes of the B104-1-1 cells were largely reversed by expression of the $\Delta$N-Grb2. The effect of the $\Delta$C-Grb2 on phenotypic reversion was much weaker. Biochemical analysis showed that the $\Delta$N-Grb2 was able to associate Shc but not the activated p185 nor Sos, while the $\Delta$C-Grb2 bound to Shc, the activated p185, and Sos. The p185-mediated Ras activation was severely inhibited by the $\Delta$N-Grb2 but not the $\Delta$C-Grb2. Taken together, these data demonstrate that interruption of the interaction between Shc and the endogenous Grb2 by the $\Delta$N-Grb2 is able to impair the oncogenic signaling of the mutation-activated p185, indicating that (i) the $\Delta$N-Grb2 functions as a strong dominant-negative mutant, (ii) Shc/Grb2/Sos pathway plays a major role in mediating the oncogenic signal of the mutation-activated p185. Unlike the $\Delta$N-Grb2, the $\Delta$C-Grb2 appears to be a relatively weak dominant-negative mutant, probably due to its ability to largely fulfill the biological functions of the wild-type Grb2. ^
Resumo:
In this thesis, I investigated the effect of cylic AMP-dependent protein kinase (PKA) on v-Mos kinase activity. Increase in PKA activity in vivo brought about either by forskolin treatment or by overexpression of the PKA catalytic subunit resulted in a significant inhibition of v-Mos kinase activity. The purified PKA catalytic subunit was able to phosphorylate recombinant p37$\rm\sp{v-mos}$ in vitro, suggesting that the mechanism of in vivo inhibition of v-Mos kinase involves direct phosphorylation by PKA. Ser-263 was identified as a residue that is normally phosphorylated at a very low level but whose phosphorylation is dramatically increased upon forskolin treatment. Consistent with the inhibitory role of Ser-263 phosphorylation, the Ala-263 mutant of v-Mos was not inhibited by forskolin treatment. Based on our results, we propose that the known inhibitory role of PKA in the initiation of oocyte maturation could be explained at least in part by its inhibition of Mos kinase.^ Combining tryptic phosphopeptide two-dimensional mapping analysis and in vitro mutagenesis studies, I identified Ser-56 as the major in vivo phosphorylation site on v-Mos. I studied the interrelationship between Ser-34 and Ser-56 phosphorylation in regulating v-Mos function. After site-directed mutagenesis to substitute serine residues with alanine or glutamic acid in different combinations to mimick unphosphorylated and phosphorylated serines respectively, various v-Mos mutants were expressed in COS-1 cells. As expected, Ala-34 mutant of v-Mos had very low (less 5% of wild type) kinase activity. The Ala-56 mutant had kinase activity 50% that of wild type. Surprisingly, the Ala-34 Ala-56 double mutant and the Ala-56 mutant exhibited identical kinase activity. On the other hand, Ala-34 Glu-56 double mutant had reduced kinase activity comparable to Ala-34 mutant. These results suggest that the phosphorylation at Ser-56 may serve to inhibit the activation of newly synthesized Mos protein. As predicted from Xenopus c-Mos studies, Glu-34 mutant of v-Mos was highly active (125% that of wild type). Interestingly, consistant with the model involving an inhibitory role of Ser-56 phosphorylation, the Glu-34 Glu-56 double mutant was totally inactive as a kinase. Moreover in my experiments, there was a perfect correlation between the level of v-Mos kinase activity of various mutants and their transforming activity. The latter is dependent upon MEK1 phosphorylation/ activation in v-mos transformed cells. Residues corresponding to both v-Mos Ser-34 and Ser-56 are evolutionarily conserved in c-Mos. Therefore, the cytostatic factor function of c-Mos may be regulated in the same manner as v-Mos kinase activity.^ It has been known that v-mos transforms cells by affecting G1 phase progression of the cell cycle. Here I showed that mos induces cyclin D1 expression in mos transformed NIH 3T3 cells and NRK 6m2 cells, and this induced level was found to be unaffected by serum starvation. Consequently, cyclin D1-Cdk4 and cyclin E-Cdk2 activities increase, and retinoblastoma protein is hyperphosphorylated. Based on studies from several laboratories, these findings suggest that increased amount of cyclin D1-Cdk4 complexes ties up the limited amount of cyclin E-Cdk2 inhibitors (e.g. p27), causing the activation of cyclin E-Cdk2. My results indicate that activation of key cell cycle regulators of G1 phase may be important for cellular transformation by mos. (Abstract shortened by UMI.) ^
Resumo:
Calcium/calmodulin-dependent protein kinase II (CaM kinase) is a multifunctional Ser/Thr protein kinase, that is highly enriched in brain and is involved in regulating many aspects of neuronal function. We observed that forebrain CaM kinase from crude homogenates, cytosolic fractions and purified preparations inactivates and translocates into the particulate fraction following autophosphorylation. Using purified forebrain CaM kinase as well as recombinant $\alpha$ isozyme, we determined that the formation of particulate enzyme was due to enzyme self-association. The conditions of autophosphorylation determine whether enzyme self-association and/or inactivation will occur. Self-association of CaM kinase is sensitive to pH, ATP concentration, and enzyme autophosphorylation. This process is prevented by saturating concentrations of ATP. However, in limiting ATP, pH is the dominant factor, and enzyme self-association occurs at pH values $\rm{<}7.0.$ Site-specific mutants were produced by substituting Ala for Thr286, Thr253, or Thr305,306 to determine whether these sites of autophosphorylation affect enzyme inactivation and self-association. The only mutation that influenced these processes was Ala286, which removed the protective effect afforded by autophosphorylation in saturating ATP. Enzyme inactivation occurs in the presence and absence of self-association and appears predominantly sensitive to nucleotide concentration, because saturating concentrations of $\rm Mg\sp{2+}/ADP$ or $\rm Mg\sp{2+}/ATP$ prevent this process. These data implicate the ATP binding pocket in both inactivation and self-association. We also observed that select peptide substrates and peptide inhibitors modeled after the autoregulatory domain of CaM kinase prevented these processes. The $\alpha$ and $\beta$ isozymes of CaM kinase were characterized independently, and were observed to exhibit differences in both enzyme inactivation and self-association. The $\beta$ isozyme was less sensitive to inactivation, and was never observed to self-associate. Biophysical characterization, and transmission electron microscopy coupled with image analysis indicated both isozymes were multimeric, however, the $\alpha$ and $\beta$ isozymes appeared structurally different. We hypothesize that the $\alpha$ subunit of CaM kinase plays both a structural and enzymatic role, and the $\beta$ subunit plays an enzymatic role. The ramifications for the functional differences observed for inactivation and self-association are discussed based on potential structural differences and autoregulation of the $\alpha$ and $\beta$ isozymes in both calcium-induced physiological and pathological processes. ^
Resumo:
The multifunctional Ca$\sp{2+}$/calmodulin-dependent protein kinase II (CaM kinase) is a Ser/Thr directed protein kinase that participates in diverse Ca$\sp{2+}$ signaling pathways in neurons. The function of CaM kinase depends upon the ability of subunits to form oligomers and to interact with other proteins. Oligomerization is required for autophosphorylation which produces significant functional changes that include Ca$\sp{2+}$/calmodulin-independent activity and calmodulin trapping. Associations with other proteins localize CaM kinase to specific substrates and effectors which serves to optimize the efficiency and speed of signal transduction. In this thesis, we investigate the interactions that underlie the appropriate positioning of CaM kinase activity in cells. We demonstrate that the subcellular distribution of CaM kinase is dynamic in hippocampal slices exposed to anoxic/aglycemic insults and to high K$\sp{+}$-induced depolarization. We determine the localization of CaM kinase domains expressed in neurons and PC-12 cells and find that the C-terminal domain of the $\alpha$ subunit is necessary for localization to dendrites. Moreover, monomeric forms of the enzyme gain access to the nucleus. Attempts made to identify novel CaM kinase binding proteins using the yeast two-hybrid system resulted in the isolation of hundreds of positive clones. Those that have been sequenced are identical to CaM kinase isoforms. Finally, we report the discovery of specific regions within the C-terminal domain that are necessary and sufficient for subunit-subunit interactions. Differences between the $\alpha$ and $\beta$ isoforms were discovered that indicate unique structural requirements for oligomerization. A model for how CaM kinase subunits interact to form holoenzymes and how structural heterogeneity might influence CaM kinase function is presented. ^
Resumo:
Shc proteins are implicated in coupling receptor tyrosine kinases to the mitogen-activated protein kinase (MAPK) pathway by recruiting Grb2/SOS to the plasma membrane. To better understand the role of Shc in oncogenesis brought about by point mutation activated neu (p185*), we transfected a Shc mutant (ShcΔCH1), which lacks the Grb2 binding site Y317 by deletion of collagen-homology domain 1, into p185*-transformed NIH3T3 cells. The cellular transformation phenotypes were found to be largely suppressed by expression of ShcΔCH1. This study indicates that Shc plays a critical role in mediating the oncogenical signals of p185*. Although ShcΔCH1 still retained another Grb2 binding site (Y239/240), we did not detect its physical association with Grb2. We also found that ShcΔCH1 could associate with p185*; however, this association did not interfere with the endogenous Shc-p185* interaction or the Shc-Grb2 interaction. In addition, p185*-mediated MAPK/Elk activation, PI3-K activation and Src activation likewise was not inhibited by ShcΔCH1 expression. Taken together, our current study clearly indicates that ShcΔCH1 suppresses the p185*-induced transformation, and that this suppression is mediated through a MAPK-independent and possibly PI3-K, Src-independent pathway. These results suggest that Shc may be involved in other unidentified signal pathways which are critical for p185*-induced cellular transformation besides the three pathways that we have studied. ^
Resumo:
Growth and regeneration of postnatal skeletal muscle requires a population of mononuclear myogenic cells, called satellite cells to add/replace myonuclei, which are postmitotic. Wedged between the sarcolemma and the basal lamina of the skeletal muscle fiber, these cells function as the stem cells of mature muscle fibers. Like other normal diploid cells, satellite cells undergo cellular senescence. Investigations of aging in both rodents and humans have shown that satellite cell self-renewal capacity decreases with advanced age. As a consequence, this could be a potential reason for the characteristically observed age-associated loss in skeletal muscle mass (sarcopenia). This provided the rationale that any intervention that can further increase the proliferative capacity of these cells should potentially be able to either delay, or even prevent sarcopenia. ^ Using clonogenicity assays to determine a cell's proliferation potential, these studies have shown that IGF-I enhances the doubling potential of satellite cells from aged rodents. Using a transgenic model, where the mice express the IGF-I transgene specifically in their striated muscles, some of the underlying biochemical mechanisms for the observed increase in replicative life span were delineated. These studies have revealed that IGF-I activates the PI3/Akt pathway to mediate downregulation of p27KIP1, which consequently is associated with an increase in cyclin E-cdk2 kinase activity, phosphorylation of pRb, and upregulation of cyclin A protein. However, the beneficial effects of IGF-I on satellite cell proliferative potential appears to be limited as chronic overexpression of IGF-I in skeletal muscles did not protect against sarcopenia in 18-mo old mice, and was associated with an exhaustion of satellite cell replicative reserves. ^ These results have shown that replicative senescence can be modulated by environmental factors using skeletal muscle satellite cells as a model system. A better understanding of the molecular basis for enhancement of proliferative capacity by IGF-I will provide a rational basis for developing more effective counter-measures against physical frailty. However, the implications of these studies are that these beneficial effects of enhanced proliferative potential by IGF-I may only be over a short-term period, and other alternative approaches may need to be considered. ^
Resumo:
Phosphatidylinositol 3-kinase (PI3K) phosphorylates membrane constituent phosphatidylinositols, producing second messengers that link membrane bound receptor signals to cellular proliferation and survival. PI3K, a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit, can be activated through induced association with other signaling molecules. The p85 subunit serves to both stabilize and inactivate p110. The inhibitory activity of P85 is relieved by occupancy of the N terminal SH2 domain by phosphorylated tyrosine. PI3K becomes phosphorylated and activated subsequent to a variety of stimuli. Indeed, Src family kinases have been demonstrated to phosphorylate p85 at tyrosine 688, but the role of phosphorylation in PI3K function is unclear. We decided to evaluate the importance of tyrosine phosphorylation to PI3K activity. We demonstrate that tyrosine phosphorylated p85 is associated with a higher specific activity than is non-phosphorylated PI3K. Wild type p85 inhibits PI3K enzyme activity, a process accentuated by mutation of tyrosine 688 to alanine and reversed by mutation to aspartate which functions as a phosphotyrosine mimic in multiple systems. Strikingly, the Y688D mutation completely reverses the p85 inhibitory activity on cell viability and activation of downstream protein NFkB. We demonstrate that tyrosine phosphorylated Y688 or Y688D is sufficient to bind the p85 N terminal SH2 domain, either within full length p85 or in an isolated N terminal SH2 domain, suggesting the possibility of an intramolecular interaction between phosphorylated Y688 and the p85 N terminal SH2 domain that can relieve the p85-induced inhibition of p110. Further, we provide evidence that dephosphorylation of Y688 reduces phosphorylation-induced PI3K activity. We demonstrate that tyrosine phosphatase SHP-1 can physically associate with p85 in a SH2-mediated interaction with the C terminal tail of SHP-1. This association is concomitant with both p85 dephosphorylation and decreased PI3K activity. Altogether, our data suggests the phosphorylation state of p85 is the focal point of a novel mechanism for PI3K activity regulation. As PI3K has been shown to be involved in the vital physiological processes of cell proliferation and apoptosis, a thorough understanding of the regulation of this signaling protein may provide opportunities for the design of novel treatments for cancer. ^
Resumo:
DNA-directed nucleoside analogues, such as ara-C, fludarabine, and gemcitabine, are antimetabolites effective in the treatment of a variety of cancers. However, resistance to nucleoside analogue-based chemotherapy in treatments is still a major problem in therapy. Therefore, it is essential to develop rationales for optimizing the use of nucleoside analogues in combination with other anticancer drugs or modalities such as radiation. The present study focuses on establishing mechanism-based combination strategy to overcome resistance to nucleoside analogues. ^ I hypothesized that the cytostatic concentrations of nucleoside analogues may cause S-phase arrest by activating an S-phase checkpoint that consists of a series of kinases. This may allow cells to repair damaged DNA over time and spare cytotoxicity. Thus, the ability of cells to enact an S-phase arrest in response to incorporation of potentially lethal amounts of nucleoside analogue may serve as a mechanism of resistance to S-phase-specific agents. As a corollary, the addition of a kinase inhibitor, such as UCN-01, may dysregulate the checkpoint response and abrogate the survival of S-phase-arrested cells by suppression of the survival signaling pathways. Using gemcitabine as a model of S-phase-specific nucleoside analogues in human acute myelogenous leukemia ML-1 cells, I demonstrated that cells arrested in S-phase in response to cytostatic conditions. Proliferation continued after washing the cells into drug-free medium, suggesting S-phase arrest served as a resistance mechanism of cancer cells to spare cytotoxicity of nucleoside analogues. However, nontoxic concentrations of UCN-01 rapidly killed S-phase-arrested cells by apoptosis. Furthermore, the molecular mechanism for UCN-01-induced apoptosis in S-phase-arrested cells was through inhibition of survival pathways associated with these cells. In this regard, suppression of the PI 3-kinase-Akt-Bad survival pathway as well as the NF-κB signaling pathway were associated with induction of apoptosis in S-phase-arrested cells by UCN-01, whereas the Ras-Raf-MEK-ERK pathway appeared not involved. This study has provided the rationales and strategies for optimizing the design of effective combination therapies to overcome resistance to nucleoside analogues. In fact, a clinical trial of the combination of ara-C with UCN-01 to treat relapsed or refractory AML patients has been initiated at U.T.M.D. Anderson Cancer Center. ^