64 resultados para NFAT isoforms
Resumo:
The cytochromes P450 comprise a superfamily of heme-containing mono-oxygenases. These enzymes metabolize numerous xenobiotics, but also play a role in metabolism of endogenous compounds. The P450 1A1 enzyme generally metabolizes polycyclic aromatic hydrocarbons, and its expression can be induced by aryl hydrocarbon receptor (AhR) activation. CYP1A1 is an exception to the generality that the majority of CYPs demonstrate highest expression in liver; CYP1Al is present in numerous extrahepatic tissues, including brain. This P450 has been observed in two forms, wildtype (WT) and brain variant (BV), arising from alternatively spliced mRNA transcripts. The CYP1A1 BV mRNA presented an exon deletion and was detected in human brain but not liver tissue of the same individuals. ^ Quantitative PCR analyses were performed to determine CYP1A1 WT and BV transcript expression levels in normal, bipolar disorder or schizophrenic groups. In our samples, we show that CYP1A1 BV mRNA, when present, is found alongside the full-length form. Furthermore, we demonstrate a significant decrease in expression of CYP1A1 in patients with bipolar disorder or schizophrenia. The expression level was not influenced by post-mortem interval, tissue pH, age, tobacco use, or lifetime antipsychotic medication load. ^ There is no indication of increased brain CYP1A1 expression in normal smokers versus non-smokers in these samples. We observed slightly increased CYP1A1 expression only in bipolar and schizophrenic smokers versus non-smokers. This may be indicative of complex interactions between neuronal chemical environments and AhR-mediated CYP1A1 induction in brain. ^ Structural homology modeling demonstrated that P450 1A1 BV has several alterations to positions/orientations of substrate recognition site residues compared to the WT isoform. Automated substrate docking was employed to investigate the potential binding of neurological signaling molecules and neurotropic drugs, as well as to differentiate specificities of the two P450 1A1 isoforms. We consistently observed that the BV isoform produced energetically favorable substrate dockings in orientations not observed for the same substrate in the WT isoform. These results demonstrated that structural differences, namely an expanded substrate access channel and active site, confer greater capacity for unique compound docking positions suggesting a metabolic profile distinct from the wildtype form for these test compounds. ^
Resumo:
Alternate splicing of the cyclin D1 gene gives rise to transcript a and b which encode two protein isoforms cyclin D1a and cyclin D1b. Through testing transcript a and transcript b in a series of human samples, we found that cyclin D1 transcript b is ubiquitously expressed as transcript a but in the lower abundance compared to transcript a. Epidemiological studies have reported that the cyclin D1 gene (CCND1) G870A polymorphism influences the risk for a variety of cancer. In this investigation, we examined the cyclin D1b levels in tumor samples with different genotypes and found that higher levels of cyclin D1b are expressed from the A allele than the G allele. Cyclin D1 is known as a cell cycle regulator facilitating the progression of the cell cycle from G1 to S phase in response to the mitogenic signals. It also interacts with several transcription factors and transcriptional coregulators to modulate their activities. It has been reported that cyclin D1a can substitute for estrogen to activate estrogen receptor α (ERα) mediated transcription and can induce the proliferation of estrogen responsive tissues. However the biological role of cyclin D1b in ERα transcriptional regulation has not been previously explored. In this study, we determined that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription. Cell proliferation assays provided the evidence that cyclin D1b negatively regulates estrogen responsive breast cancer cell growth. Taken together, our findings show that the CCND1 G870A polymorphism is correlated with increased levels of cyclin D1b and that cyclin D1b antagonizes the action of cyclin D1a on ERα mediated transcription providing evidence for the mechanism by which the CCND1 G870A polymorphism may be protective in certain types of breast cancer. ^
Resumo:
The purpose of this dissertation research was to investigate potential mechanisms through which mutations in two ubiquitously expressed genes, inosine monophosphate dehydrogenase 1 (IMPDH1) and pre-mRNA processing factor 31 (PRPF31), cause autosomal dominant retinitis pigmentosa (adRP) but have no other apparent clinical consequences. Basic properties of the gene and gene product, such as expression and protein levels, were examined. The purpose of our research is to understand the genetic basis of inherited retinopathies such as retinitis pigmentosa (RP). RP is a heterogeneous retinal dystrophy that affects approximately one in 3,700 individuals, making it the most common heritable retinal degenerative disease worldwide. Currently, mutations in 35 genes are known to cause RP and additional loci have been mapped but the underlying gene is not yet known. Often the genes associated with RP are integral to the biological processes underlying vision, making their role in retinal disease easy to explain. However, the mechanisms by which other genes cause RP are not apparent, especially widely-expressed genes. For IMPDH1, this research characterized the enzymatic properties of retinal isoforms. Results show that the retinal isoforms have enzymatic functions similar to the previously known canonical IMPDH1 whether or not an adRP pigmentosa mutation is included in the protein. For PRPF31, this research tested the hypothesis that functional haploinsufficiency is the cause of disease and relates to nonpenetrance in some individuals. Studies in patients with known mutations show that haploinsufficiency is the likely cause of disease, however, we did not confirm that non-penetrant individuals are protected from disease via increased expression of the wild type allele. Information gleaned from these functional studies, and the testing methods developed in tandem, will contribute to future research on disease mechanism related to adRP. ^
Resumo:
The presentation of MHC class I (MHC-I)/peptide complexes by dendritic cells (DCs) is critical for the maintenance of central tolerance to self and for the regulation of cytotoxic T lymphocytes (CTL)-mediated adaptive immune responses against pathogens and cancer cells. Interestingly, several findings have suggested that the cytoplasmic tail of MHC class I plays a functional role in the regulation of CTL immune responses. For example, our previous studies demonstrated that exon 7-deleted MHC-I molecules not only showed extended DC cell surface half-lives but also induced significantly increased CTL responses to viral challange invivo. Although exon 7-deleted variant of MHC-I does not occur naturally in humans, the animal studies prompted us to examine whether exon 7-deleted MHC-I molecules could generate augmented CTL responses in a therapeutic DC-based vaccine setting. To examine the stimulatory capacity of exon 7-deleted MHC-I molecules, we generated a lentivirus-mediated gene transfer system to induce the expression of different MHC-I cytoplasmic tail isoforms in both mouse and human DCs. These DCs were then used as vaccines in a melanoma mouse tumor model and in a human invitro co-culture system. In this thesis, we show that DCs expressing exon 7-deleted MHC-I molecules, stimulated remarkably higher levels of T-cell cytokine production and significantly increased the proliferation of meanoma-specific (Pmel-1) T cells compared with DCs expressing wild type MHC-I. We also demonstrate that, in combination with adoptive transfer of Pmel-1 T-cell, DCs expressing exon 7-deleted Db molecules induced greater anti-tumor responses against established B16 melanoma tumors, significantly extending mouse survival as compared to DCs expressing wild-type Db molecules. Moreover, we also observed that human DCs expressing exon 7-deleted HLA-A2 molecules showed similarly augmented CTL stimulatory ability. Mechanistic studies suggest that exon 7-deleted MHC-I molecules showed impaired lateral membrane movement and extended cell surface half-lives within the DC/T-cell interface, leading to increased spatial availability of MHC-I/peptide complexes for recognition by CD8+ T cells. Collectively, these results suggesr that targeting exon 7 within the cytoplasmic tail of MHC-I molecules in DC vaccines has the potential to enhance CD8+ T cell stimulatory capacity and improve clinical outcomes in patients with cancer or viral infections.
Resumo:
Ras genes are mutated in 15% of human cancers. Ras GTPases operate as molecular switches regulating cellular processes including proliferation, differentiation, and apoptosis. The three main isoforms of Ras – H-Ras, K-Ras, and N-Ras – inhabit distinct nanodomains of the plasma membrane and intracellular compartments including the Golgi. However, the role of single endogenous Ras isoforms on these compartments remains unclear as most studies have utilized ectopically expressed and mutant forms of Ras proteins. In an effort to develop novel tools that will allow us to abrogate individual endogenous Ras isoforms, we targeted the catalytic domain of p120RasGAP to the plasma membrane with the hypervariable region (HVR) of H-Ras (GAP-CTH) or K-Ras (GAP-CTK) and to the Golgi using the HVR of H-Ras with insertion of a point mutation (GAP-CTH181S). We performed GST-RBD pull-downs on cells expressing each GAP construct and stimulated with epidermal growth factor (EGF). We found that GAP-CTH and GAP-CTK specifically inhibited H-Ras or K-Ras, respectively. However, we did not detect any effect of GAP-CTH181S on Ras activation. Additionally, we used confocal microscopy to verify the ability of GAP constructs to abrogate Ras activation in distinct sub-cellular compartments. We found that GAP-CTH inhibits H-Ras activation on the plasma membrane, while GAP-CTK inhibits K-Ras activation on the plasma membrane. On the contrary, GAP-CTH181S inhibited H-Ras activation on the Golgi. We also analyzed the effects of these GAP constructs on the activation of ERK and Akt in response to EGF stimulation. We found that EGF stimulation of the MAPK pathway was inhibited by GAP-CTK but none of the other GAP constructs, while Akt activation was not inhibited by any GAP construct. Finally, we assayed cellular proliferation and differentiation. We found that GAP-CTK and GAP-CTH were equipotent inhibitors of cellular growth, whereas GAP-CTH181S was less potent. We also found that GAP-CTK and GAP-CTH inhibited differentiation with similar potency, while GAP-CTH181S was more potent. This approach may be adapted to investigate any Ras-dependent signaling pathway. Therefore, it has the potential to become a powerful tool for studying Ras isoform-specific signaling outputs.
Resumo:
Alternative RNA splicing is a critical process that contributes variety to protein functions, and further controls cell differentiation and normal development. Although it is known that most eukaryotic genes produce multiple transcripts in which splice site selection is regulated, how RNA binding proteins cooperate to activate and repress specific splice sites is still poorly understood. In addition how the regulation of alternative splicing affects germ cell development is also not well known. In this study, Drosophila Transformer 2 (Tra2) was used as a model to explore both the mechanism of its repressive function on its own pre-mRNA splicing, and the effect of the splicing regulation on spermatogenesis in testis. Half-pint (Hfp), a protein known as splicing activator, was identified in an S2 cell-based RNAi screen as a co-repressor that functions in combination with Tra2 in the splicing repression of the M1 intron. Its repressive splicing function is found to be sequence specific and is dependent on both the weak 3’ splice site and an intronic splicing silencer within the M1 intron. In addition we found that in vivo, two forms of Hfp are expressed in a cell type specific manner. These alternative forms differ at their amino terminus affecting the presence of a region with four RS dipeptides. Using assays in Drosophila S2 cells, we determined that the alternative N terminal domain is necessary in repression. This difference is probably due to differential localization of the two isoforms in the nucleus and cytoplasm. Our in vivo studies show that both Hfp and Tra2 are required for normal spermatogenesis and cooperate in repression of M1 splicing in spermatocytes. But interestingly, Tra2 and Hfp antagonize each other’s function in regulating germline specific alternative splicing of Taf1 (TBP associated factor 1). Genetic and cytological studies showed that mutants of Hfp and Taf1 both cause similar defects in meiosis and spermatogenesis. These results suggest Hfp regulates normal spermatogenesis partially through the regulation of taf1 splicing. These observations indicate that Hfp regulates tra2 and taf1 activity and play an important role in germ cell differentiation of male flies.
Resumo:
The nine membrane-bound isoforms of adenylyl cyclase (AC), via synthesis of the signaling molecule cyclic AMP (cAMP), are involved in many isoform specific physiological functions. Decreasing AC5 activity has been shown to have potential therapeutic benefit, including reduced stress on the heart, pain relief, and attenuation of morphine dependence and withdrawal behaviors. However, AC structure is well conserved, and there are currently no isoform selective AC inhibitors in clinical use. P-site inhibitors inhibit AC directly at the catalytic site, but with an uncompetitive or noncompetitive mechanism. Due to this mechanism and nanomolar potency in cell-free systems, attempts at ligand-based drug design of novel AC inhibitors frequently use P-site inhibitors as a starting template. One small molecule inhibitor designed through this process, NKY80, is described as an AC5 selective inhibitor with low micromolar potency in vitro. P-site inhibitors reveal important ligand binding “pockets” in the AC catalytic site, but specific interactions that give NKY80 selectivity are unclear. Identifying and characterizing unique interactions between NKY80 and AC isoforms would significantly aid the development of isoform selective AC inhibitors. I hypothesized that NKY80’s selective inhibition is conferred by AC isoform specific interactions with the compound within the catalytic site. A structure-based virtual screen of the AC catalytic site was used to identify novel small molecule AC inhibitors. Identified novel inhibitors are isoform selective, supporting the catalytic site as a region capable of more potent isoform selective inhibition. Although NKY80 is touted commercially as an AC5 selective inhibitor, its characterization suggests strong inhibition of both AC5 and the closely related AC6. NKY80 was also virtually docked to AC to determine how NKY80 binds to the catalytic site. My results show a difference between NKY80 binding and the conformation of classic P-site inhibitors. The selectivity and notable differences in NKY80 binding to the AC catalytic site suggest a catalytic subregion more flexible in AC5 and AC6 that can be targeted by selective small molecule inhibitors.
Resumo:
Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.
Resumo:
Targeting Histone deacetylases (HDAC) for the treatment of genetically complex soft tissue sarcoma Histone deactylase inhibitors (HDACi) are a new class of anticancer therapeutics; however, little is known about HDACi or the individual contribution of HDAC isoform activity in soft tissue sarcoma (STS). We investigated the potential efficacy of HDACi as monotherapy and in combination with chemotherapy in a panel of genetically complex STS. We found that HDACi combined with chemotherapy significantly induced anti-STS effects in vitro and in vivo. We then focused our study of HDACi in malignant peripheral nerve sheath tumor (MPNST), a subtype of highly aggressive, therapeutically resistant, and commonly fatal malignancies that occur in patients with neurofibromatosis type-1 (NF1) or sporadically. The therapeutic efficacy of HDACi was investigated in a panel of NF1-associated and sporadic MPNST cell lines. Our results demonstrate the NF1-assocaited cohort to be highly sensitive to HDACi while sporadic cell lines exhibited resistance. HDACi-induced productive autophagy was found to be a mode of resistance and inhibiting HDACi-induced autophagy significantly induced pro-apoptotic effects of HDACi in vitro and in vivo. HDACs are not a single enzyme consisting of 11 currently known isoforms. HDACis used in these studies inhibit a variety of these isoforms, namely class I HDACs which include HDAC1, 2, 3, and 8. Recently, HDAC8-specific inhibitors (HDAC8i) have been created and tested in various cancer cell lines. Lastly, the potential therapeutic efficacy of HDAC8i was investigated in human (NF1-associated and sporadic) and NF1-associated murine-derived MPNST. HDAC8i abrogated cell growth in human and murine-derived MPNST cells. Similar to the pattern noticed with pan-HDACis NF1-associated cells, especially murine-derived, were more sensitive to HDAC8i compared to human sporadic MPNST cell lines. S-phase arrest was observed in human and murine MPNST cells, independent of p53 mutational and NF1 status. HDAC8i induced apoptosis is all cell lines tested, with a more pronounced effects in human and murine-derived NF1-associated cells. Most importantly, HDAC8i abrogated murine-derived MPNST xenograft growth in vivo. Taken together, these findings support the evaluation of pan-HDACi and isoform-specific inhibitors as a novel therapy to treat MPNST, including in combination with autophagy blocking combination regimens in particular for patients with sporadic MPNST.
Resumo:
Ras proteins serve as crucial signaling modulators in cell proliferation through their ability to hydrolyze GTP and exist in a GTP “on” state and GTP “off” state. There are three different human Ras isoforms: H-ras, N-ras and K-ras (4A and 4B). Although their sequence identity is very high at the catalytic domain, these isoforms differ in their ability to activate different effectors and hence different signaling pathways. Much of the previous work on this topic has attributed this difference to the hyper variable region of Ras proteins, which contains most of the sequence variance among the isoforms and encodes specificity for differential distribution in the membrane. However, we hypothesize that sequence variation on lobe II of Ras catalytic domain alters dynamics and leads to differential preference for different effectors or modulators. In this work, we used all atom molecular dynamics to analyze the dynamics in the catalytic domain of H-ras and K-ras. We have also analyzed the dynamics of a transforming mutant of H-ras and K-ras and further studied the dynamics of an effectorselective mutant of H-ras. Collectively we have determined that wild type K-ras is more dynamic than H-ras and that the structure of the effector binding loop more closely resembles that of the T35S Raf-selective mutant, possibly giving us a new view and insight into the v mode of effector specificity. Furthermore we have determined that specific mutations at the same location perturb the conformational equilibrium differently in H-ras and K-ras and that an enhanced oncogenic potential may arise from different structural perturbations for each point mutation of a specific isoform.
Resumo:
Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesion, catenins have more recently been indicated to participate in cell and developmental signaling pathways. $\beta$-catenin, for example, associates directly with receptor tyrosine kinases and transcription factors such as LEF-1/TCF, and tranduces developmental signals within the Wnt pathway. $\beta$-catenin also appear to a role in regulating cell proliferation via its interaction with the tumor supressor protein APC. I have employed the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to $\beta$-catenin's central Armadillo-repeat domain. The $\beta$-catenin-fascin interaction exists in cell lines as well as in animal brain tissues as revealed by immunoprecipitation analysis, and substantiated in vitro with purified proteins. Fascin additionally binds to plakoglobin, which contains a more divergent Armadillo-repeat domain. Fascin and E-cadherin utilize a similar binding-site within $\beta$-catenin, such that they form mutually exclusive complexes with $\beta$-catenin. Fascin and $\beta$-catenin co-localize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. Total immunoprecipitable b-catein has several isoforms, only the hyperphosphorylated isoform 1 associated with fascin. An increased $\beta$-catenin-fascin interaction was observed in HGF stimulated cells, and in Xenopus embryos injected with src kinase RNAs. The increased $\beta$-catenin association with fascin is correlated with increased levels of $\beta$-catenin phosphorylation. $\beta$-catenin, but not fascin, can be readily phosphorylated on tyrosine in vivo following src injection of embryos, or in vitro following v-src addition to purified protein components. These observations suggest a role of $\beta$-catenin phosphorylation in regulating its interaction with fascin, and src kinase may be an important regulator of the $\beta$-catenin-fascin association in vivo. The $\beta$-catenin-fascin interaction represents a novel catenin complex, that may conceivably regulate actin cytoskeletal structures, cell adhesion, and cellular motility, perhaps in a coordinate manner with its functions in cadherin and APC complexes. ^
Resumo:
One of the most elegant and tightly regulated mechanisms for control of gene expression is alternative pre-mRNA splicing. Despite the importance of regulated splicing in a variety of biological processes relatively little is understood about the mechanisms by which specific alternative splice choices are made and regulated. The transformer-2 (tra-2) gene encodes a splicing regulator that controls the use of alternative splicing pathways in the sex determination cascade of D. melanogaster and is particularly interesting because it directs the splicing of several distinct pre-mRNAs in different manners. The tra-2 protein positively regulates the splicing of both doublesex (dsx) and fruitless (fru) pre-mRNAs. Additionally tra-2 controls exuperantia (exu) by directing the choices between splicing and cleavage/polyadenylation and autoregulates the tra-2 pre-mRNA processing by repressing the removal of a specific intron (called M1). The goal of this study is to identify the molecular mechanisms by which TRA-2 protein affects the alternative splicing of pre-mRNA deriving from the tra-2 gene itself.^ The autoregulation of M1 splicing plays a key role in regulation of the relative levels of two functionally distinct TRA-2 protein isoforms expressed in the male germline. We have examined whether the structure, function, and regulation of tra-2 are conserved in Drosophila virilis, a species diverged from D. melanogaster by over 60 million years. We find that the D. virilis homolog of tra-2 produces alternatively spliced RNAs encoding a set of protein isoforms analogous to those found in D. melanogaster. When introduced into the genome of D. melanogaster, this homolog can functionally replace the endogenous tra-2 gene for both normal female sexual differentiation and spermatogenesis. Examination of alternative pre-mRNAs produced in D. virilis testes suggests that the germline-specific autoregulation of tra-2 function is accomplished by a strategy similar to that used in D. melanogaster.^ To identify elements necessary for regulation of tra-2 M1 splicing, we mutagenized evolutionarily conserved sequences within the tra-2 M1 intron and flanking exons. Constructs containing these mutations were used to generate transgenic fly lines that have been tested for their ability to carry out autoregulation. These transgenic fly experiments elucidated several elements that are necessary for setting up a context under which tissue-specific regulation of M1 splicing can occur. These elements include a suboptimal 3$\sp\prime$ splice site, an element that has been conserved between D. virilis and D. melanogaster, and an element that resembles the 3$\sp\prime$ portion of a dsx repeat and other splicing enhancers.^ Although important contextual features of the tra-2 M1 intron have been delineated in the transgenic fly experiments, the specific RNA sequences that interact directly with the TRA-2 protein were not identified. Using Drosophila nuclear extracts from Schneider cells, we have shown that recombinant TRA-2 protein represses M1 splicing in vitro. UV crosslinking analysis suggests that the TRA-2 protein binds to several different sites within and near the M1 intron. ^
Resumo:
The multifunctional Ca$\sp{2+}$/calmodulin-dependent protein kinase II (CaM kinase) is a Ser/Thr directed protein kinase that participates in diverse Ca$\sp{2+}$ signaling pathways in neurons. The function of CaM kinase depends upon the ability of subunits to form oligomers and to interact with other proteins. Oligomerization is required for autophosphorylation which produces significant functional changes that include Ca$\sp{2+}$/calmodulin-independent activity and calmodulin trapping. Associations with other proteins localize CaM kinase to specific substrates and effectors which serves to optimize the efficiency and speed of signal transduction. In this thesis, we investigate the interactions that underlie the appropriate positioning of CaM kinase activity in cells. We demonstrate that the subcellular distribution of CaM kinase is dynamic in hippocampal slices exposed to anoxic/aglycemic insults and to high K$\sp{+}$-induced depolarization. We determine the localization of CaM kinase domains expressed in neurons and PC-12 cells and find that the C-terminal domain of the $\alpha$ subunit is necessary for localization to dendrites. Moreover, monomeric forms of the enzyme gain access to the nucleus. Attempts made to identify novel CaM kinase binding proteins using the yeast two-hybrid system resulted in the isolation of hundreds of positive clones. Those that have been sequenced are identical to CaM kinase isoforms. Finally, we report the discovery of specific regions within the C-terminal domain that are necessary and sufficient for subunit-subunit interactions. Differences between the $\alpha$ and $\beta$ isoforms were discovered that indicate unique structural requirements for oligomerization. A model for how CaM kinase subunits interact to form holoenzymes and how structural heterogeneity might influence CaM kinase function is presented. ^
Resumo:
To answer the question whether increased energy demand resulting from myocyte hypertrophy and enhanced $\beta$-myosin heavy chain mRNA, contractile protein synthesis and assembly leads to mitochondrial proliferation and differentiation, we set up an electrical stimulation model of cultured neonatal rat cardiac myocytes. We describe, as a result of increased contractile activity, increased mitochondrial profiles, cytochrome oxidase mRNA, and activity, as well as a switch in mitochondrial carnitine palmitoyltransferase-I (CPT-I) from the liver to muscle isoform. We investigate physiological pathways that lead to accumulation of gene transcripts for nuclear encoded mitochondrial proteins in the heart. Cardiomyocytes were stimulated for varying times up to 72 hr in serum-free culture. The mRNA contents for genes associated with transcriptional activation (c-fos, c-jun, junB, nuclear respiratory factor 1 (Nrf-1)), mitochondrial proliferation (cytochrome c (Cyt c), cytochrome oxidase), and mitochondrial differentiation (carnitine palmitonyltransferase I (CPT-I) isoforms) were measured. The results establish a temporal pattern of mRNA induction beginning with c-fos (0.25-3 hr) and followed by c-jun (0.5-3 hr), junB (0.5-6 hr), NRF-1 (1-12 hr), Cyt c (12-72 hr), cytochrome c oxidase (12-72 hr). Induction of the latter was accompanied by a marked decrease in the liver-specific CPT-I mRNA. Electrical stimulation increased c-fos, $\beta$-myosin heavy chain, and Cyt c promoter activities. These increases coincided with a rise in their respective endogenous gene transcripts. NRF-1, cAMP response element (CRE), and Sp-1 site mutations within the Cyt c promoter reduced luciferase expression in both stimulated and nonstimulated myocytes. Mutations in the Nrf-1 and CRE sites inhibited the induction by electrical stimulation or by transfection of c-jun into non-paced cardiac myocytes whereas mutation of the Sp-1 site maintained or increased the fold induction. This is consistent with the appearance of NRF-1 and fos/jun mRNAs prior to that of Cyt c. Overexpression of c-jun by transfection also activates the Nrf-1 and Cyt c mRNA sequentially. Electrical stimulation of cardiac myocytes activates the c-Jun-N-terminal kinase so that the fold-activation of the cyt c promoter is increased by pacing when either c-jun or c-fos/c-jun are cotransfected. We have identified physical association of Nrf-1 protein with the Nrf-1 enhancer element and of c-Jun with the CRE binding sites on the Cyt c promoter. This is the first demonstration that induction of Nrf-1 and c-Jun by pacing of cardiac myocytes directly mediates Cyt c gene expression and mitochondrial proliferation in response to hypertrophic stimuli in the heart.^ Subsequent to gene activation pathways that lead to mitochondrial proliferation, we observed an isoform switch in CPT-I from the liver to muscle mRNA. We have found that the half-life for the muscle CPT-I is not affected by electrical stimulation, but electrical decrease the T1/2 in the liver CPT-I by greater than 50%. This suggests that the liver CPT-I switch to muscle isoform is due to (1) a decrease in T1/2 of liver CPT-I and (2) activation of muscle CPT-Itranscripts by electrical stimulation. (Abstract shortened by UMI.) ^
Resumo:
Regulation of cytoplasmic deadenylation, the first step in mRNA turnover, has direct impact on the fate of gene expression. AU-rich elements (AREs) found in the 3′ untranslated regions of many labile mRNAs are the most common RNA-destabilizing elements known in mammalian cells. Based on their sequence features and functional properties, AREs can be divided into three classes. Class I or class III ARE directs synchronous deadenylation, whereas class II ARE directs asynchronous deadenylation with the formation of poly(A)-intermediates. Through systematic mutagenesis study, we found that a cluster of five or six copies of AUUUA motifs forming various degrees of reiteration is the key feature dictating the choice between asynchronous versus synchronous deadenylation. A 20–30 nt AU-rich sequence immediately 5 ′ to this cluster of AUUUA motifs can greatly enhance its destabilizing ability and is an integral part of the AREs. These two features are the defining characteristics of class II AREs. ^ To better understand the decay mechanism of AREs, current methods have several limitations. Taking the advantage of tetracycline-regulated promoter, we developed a new transcriptional pulse strategy, Tet-system. By controlling the time and the amount of Tet addition, a pulse of RNA could be generated. Using this new system, we showed that AREs function in both growth- and density-arrested cells. The new strategy offers for the first time an opportunity to investigate control of mRNA deadenylation and decay kinetics in mammalian cells that exhibit physiologically relevant conditions. ^ As a member of heterogeneous nuclear RNA-binding protein, hnRNP D 0/AUF1 displays specific affinities for ARE sequences in vitro . But its in vivo function in ARE-mediated mRNA decay is unclear. AUF1/hnRNP D0 is composed of at least four isoforms derived by alternative RNA splicing. Each isoform exhibits different affinity for ARE sequence in vitro. Here, we examined in vivo effect of AUF1s/hnRNP D0s on degradation of ARE-containing mRNA. Our results showed that all four isoforms exhibit various RNA stabilizing effects in NIH3T3 cells, which are positively correlated with their binding affinities for ARE sequences. Further experiments indicated that AUF1/hnRNP D0 has a general role in modulating the stability of cytoplasmic mRNAs in mammalian cells. ^