51 resultados para DNA-damaging activity
Resumo:
The present study was designed to determine the potential anticarcinogenic activity of naturally occurring coumarins and their mechanism of action. The results indicated that several naturally occurring coumarins including bergamottin, coriandrin, imperatorin, isopimpinellin, and ostruthin, to which humans are routinely exposed in the diet, were effective inhibitors and/or inactivators of CYP1A1-mediated ethoxyresorufin-O-dealkylase (EROD) or CYP2B1-mediated pentoxyresorufin-O-dealkylase (PROD) in mouse liver microsomes. In addition, bergamottin and corandrin were also found to be inhibitors of purified human P450 1A1 in vitro. Further studies with coriandrin revealed that this compound was a mechanism-based inactivator of P450 1A1 and covalently bound to the P450 1A1 apoprotein. In cultured mouse keratinocytes, bergamottin and coriandrin effectively inhibited the B(a) P metabolism and significantly decreased covalent binding of B(a) P and DMBA to keratinocyte DNA and anti-diol-epoxide-DNA adducts derived from both B(a) P and DMBA in keratinocytes. The data from in vivo experiments showed that bergamottin and coriandrin were potent inhibitors of covalent binding of B (a) P to epidermal DNA and the formation of (+) anti BPDE-DNA adduct, whereas imperatorin and isopimpinellin were more potent inhibitors of covalent binding of DMBA to epidermal DNA. The ability of coumarins to inhibit covalent binding of B (a) P to DNA in mouse epidermis was positively correlated with their inhibitory effect P450 1A1 in vitro, while the inhibitory effect of coumarins on covalent binding of DMBA to epidermal DNA was positively correlated with their inhibitory effects on P450 2B1 and negatively to their inhibitory activity toward P450 1A1. The data from tumor experiments indicated that bergamottin, ostruthin, and coriandrin inhibited tumor initiation by B (a) P in a two-stage carcinogenesis protocol. Bergamottin was most effective in this regard and produced a dose dependent inhibition of papilloma formation in these experiments. In addition, imperatorin was an effective inhibitor of skin tumorigenesis induced by DMBA in SENCAR mouse skin using both a two-stage and a complete carcinogenesis protocol. At dose levels higher than those effective against DMBA, imperatorin also inhibited tumor initiation by B (a) P. The results to date demonstrate that several naturally occurring coumarins possess the ability to block tumor initiation and tumorigenesis by PAHs such as B (a) P and DMBA through inhibition of the P450s involved in the metabolic activation of these hydrocarbons. A working model for the involvement of specific P450s in the metabolic activation of these two PAHs was proposed. ^
Resumo:
p53 is required for the maintenance of the genomic stability of cells. Mutations in the p53 tumor-suppressor gene occur in more than 50% of human cancers of diverse types. In addition, 70% of families with Li-Fraumeni syndrome have a germline mutation in p53, predisposing these individuals to multiple forms of cancer. In response to DNA damage, p53 becomes stabilized and activated. However the exact mechanism by which DNA damage signals the stabilization and activation of p53 still remains elusive. The biochemical activity of p53 that is required for tumor suppression, and presumably the cellular response to DNA damage, involves the ability of the protein to bind to specific DNA sequences and to function as a transcription factor. For the downstream targets, p53 transactivates many genes involved in growth arrest, apoptosis and DNA repair such as p21, Bax and GADD45, respectively. An open question in the field is how cells can determine the downstream effects of p53. ^ We hypothesize that, through its associated proteins, p53 can differentially transactivate its target genes, which determine its downstream effect. Additionally, p53 interacting proteins may be involved in signaling for the stabilization and activation of p53. Therefore, a key aspect to understanding p53 function is the identification and analysis of proteins that interact with it. We have employed the Sos recruitment system (SRS), a cytoplasmic yeast two-hybrid screen to identify p53 interacting proteins. The SRS is based on the ability of Sos to activate Ras when it becomes localized to the plasma membrane. The system takes advantage of an S. cerevisiae strain, cdc25-2 temperature sensitive mutant, harboring a mutation in Sos. In this strain, fusion proteins containing a truncated Sos will only localize to the membrane by protein-protein interaction, which allows growth at non-permissive temperature. This system allows the use of intact transcriptional activators such as p53. ^ To date, using a modified SRS library screen to identify p53 interacting proteins, I have identified p53 (known to interact with itself) and a novel p53-interacting protein (PIP). PIP is a specific p53 interacting protein in the SRS. The interaction of p53 and PIP was further confirmed by performing in vitro and in vivo binding assays. In the in vivo binding study, the interaction can only be detected in the presence of ionizing radiation suggesting that this interaction might be involved in DNA-damage induced p53-signalling pathway. After screening cDNA and genomic libraries, a full-length PIP-cDNA clone ( ∼ 3kb) was obtained which encodes a protein of 429 amino acids with calculated molecular weight of 46 kDa. The results of genebank search indicated that the PIP is an unidentified gene and contains a conserved ring-finger domain, which is present in a diverse family of regulatory proteins involved in different aspects of cellular function. Northern blot analysis revealed that the size of its messenge is approximately 3 kb preferentially expressed in brain, heart, liver and kidney. The PIP protein is mainly located in the cytoplasm as determined by the cellular localization of a green fluorescence fusion protein. Preliminary functional analysis revealed that PIP downregulated the transactivation activity of p53 on both p21 and mdm2 promoters. Thus, PIP may be a novel negative regulator of p53 subsequent to DNA damage. ^
Resumo:
The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^
Resumo:
Sox9 is a transcription factor required for chondrocyte differentiation and cartilage formation. In an effort to identify SOX9 interacting protein(s), we screened a chondrocyte cDNA library with a modified yeast two-hybrid method, Son of Sevenless (SOS) recruitment system (SRS). The catalytic subunit of cyclic AMP-dependent protein kinase A (PKA-Cα) and a new long form of c-Maf transcription factor (Lc-Maf) were found to interact specifically with SOX9. We showed here that two PKA phosphorylation consensus sites of SOX9 could be phosphorylated by PKA in vitro as well as in vivo. PKA phosphorylation of SOX9 increases its DNA binding and transcriptional activities on a Col2a1 chondrocyte-specific enhancer. Mutations of these two PKA phosphorylation sites markedly decreased the activation of SOX9 by PKA. ^ To test whether parathyroid hormone-related peptide (PTHrP) signaling results in SOX9 phosphorylation, we generated a phosphospecific antibody that specifically recognizes SOX9 that is phosphorylated at serine 181 (S 181) one of the two consensus PKA phosphorylation sites. Addition of PTHrP to COS7 cells cotransfected with SOX9 and PTH/PTHrP receptor strongly increased phosphorylation of SOX9 at S181; this phosphorylation was blocked by a PKA-specific inhibitor. In similar experiments we showed that PTHrP increased the activity of a SOX9-dependent Col2a1 enhancer. This increase in activity was abolished when a SOX9 mutant was used containing serine-to-alanine substitution in the two consensus PKA phosphorylation sites of SOX9. Using our phosphospecific SOX9 antibody we showed by immunohistochemistry of mouse embryos that Sox9 phosphorylated at S181 was localized almost exclusively in the pre-hypertrophic zone of the growth plate, an area corresponding to the major site of expression of PTH/PTHrP receptor. In contrast, no phosphorylation of Sox9 at S181 was detected in growth plates of PTH/PTHrP receptor null mutant mice. Sox9, regardless of phosphorylation state, was present in all chondrocytes of both genotypes except in hypertrophic chondrocytes. Thus, Sox9 is a target of PTHrP signaling and the PTHrP-dependent phosphorylation of SOX9 enhances its transcriptional activity. ^ In order to investigate the in vivo function of Sox9 phosphorylation by PKA, we are generating a mouse model of mutant Sox9 harboring point mutations in two PKA phosphorylation sites. Preliminary results indicated that heterozygous mice containing half amount of mutant Sox9 that can not be phosphorylated by PKA have normal skeletal phenotype and homozygous mice are being generated. ^ Lc-Maf encodes an extra ten amino acids at the carboxyl terminus of c-Maf and contains a completely different 3′ untranslated region. The interaction between SOX9 and Lc-Maf was further confirmed by co-immunoprecipitation and GST-pull down assays, which mapped the interacting domains of SOX9 to HMG DNA binding domain and that of Lc-Maf to basic leusine zipper motif. In situ hybridizations showed that RNA of Lc-Maf coexpressed with those of Sox9 and Col2a1 in areas of mesenchymal condensation during the early stages of mouse embryo development. A DNA binding site of Lc-Maf was identified at the 5′ part of a 48-bp Col2a1 enhancer element near the HMG binding site of SOX9. Lc-Maf and SOX9 synergistically activated a luciferase reporter plasmid containing a Col2al enhancer and increased the transcription of endogenous Col2a1 gene. In summary, Lc-Maf is the first identified SOX9-interating protein during chondrogenesis and may be an important activator of Col2a1 gene. ^
Resumo:
Exogenous ligands that bind to the estrogen receptor (ER) exhibit unique pharmacologies distinct from that observed with the endogenous hormone, 17β-estradiol (ED. Differential activity among ER ligands has been observed at the level of receptor binding, promoter interaction and transcriptional activation. Furthermore, xenoestrogens can display tissue-specific agonist activity on the cellular level, functioning as an agonist in one tissue and as an antagonist in another. That the same ligand, functioning through the same receptor, can produce differing agonist responses on the cellular level indicates that there are tissue-specific determinants of agonist activity. In these studies critical molecular determinants of agonist activity were characterized for several cell types. In the normal and neoplastic myometrium a proliferative response was dependent upon activation of AF2 of the ER, functioning as a determinant of agonism in this cell type. Progesterone receptor (PR) ligands transdominantly suppressed ER-mediated transcription and proliferation in uterine leiomyoma cells, indicating that ER/PR cross-talk can modulate agonist activity in a myometrial cell background. In the breast, the agonist response to ER ligands was investigated by employing a functional genomics approach to generate gene expression profiles. Treatment of breast cancer cells with the selective estrogen receptor modulator tamoxifen largely recapitulated the expression profile induced by treatment with the agonist E2, despite the well-characterized antiproliferative effects produced by tamoxifen in this cell type. While the expression of many genes involved in regulating cell cycle progression, including fos, myc, cdc25a, stk15 and cyclin A, were induced by both E2 and tamoxifen in breast cells, treatment with the agonist E2 specifically induced the expression of cyclin D1, fra-1 , and uracil DNA glycosylase. These results suggest that the inability of tamoxifen to transactivate expression of only a few key genes, functioning as cellular gatekeepers, prevent tamoxifen-treated breast cells from entering the cell cycle. Thus, the expression of these agonist-specific marker genes is a potential determinant of agonist activity at the cellular level in the breast. Collectively, studies in the breast and uterine myometrium have identified several mechanisms whereby ER ligands modulate ER-mediated signaling and provide insights into the biology of tissue-specific agonist activity in hormone-responsive tissues. ^
Resumo:
The BCR-ABL fusion gene is the molecular hallmark of Philadelphia-positive leukemias. Normal Bcr is a multifunctional protein, originally localized to the cytoplasm. It has serine kinase activity and has been implicated in cellular signal transduction. Recently, it has been reported that Bcr can interact with xeroderma pigmentosum group B (XPB/ERCC3)—a nuclear protein active in UV-induced DNA repair. Two major Bcr proteins (p160 Bcr and p130Bcr) have been characterized, and our preliminary results using metabolic labeling and immunoblotting demonstrated that, while both the p160 and p130 forms of Bcr localized to the cytoplasm, the p130 form (and to a lesser extent p160) could also be found in the nucleus. Furthermore, electron microscopy confirmed the presence of Bcr in the nucleus and demonstrated that this protein associates with metaphase chromatin as well as condensed interphase heterochromatin. Since serine kinases that associate with condensed DNA are often cell cycle regulatory, these observations suggested a novel role for nuclear Bcr in cell cycle regulation and/or DNA repair. However, cell cycle synchronization analysis did not demonstrate changes in levels of Bcr throughout the cell cycle. Therefore we hypothesized that BCR serves as a DNA repair gene, and its function is altered by formation of BCR-ABL. This hypothesis was investigated using cell lines stably transfected with the BCR-ABL gene, and their parental counterparts (MBA-1 vs. M07E and Bcr-AblT1 vs. 4A2+pZAP), and several DNA repair assays: the Comet assay, a radioinimunoassay for UV-induced cyclobutane pyrimidine dimers (CPDs), and clonogenic assays. Comet assays demonstrated that, after exposure to either ultraviolet (UV)-C (0.5 to 10.0 joules m −2) or to gamma radiation (200–1000 rads) there was greater efficiency of DNA repair in the BCR-ABL-transfected cells compared to their parental controls. Furthermore, after UVC-irradiation, there was less production of CPDs, and a more rapid disappearance of these adducts in BCR-ABL-bearing cells. UV survival, as reflected by clonogenic assays, was also greater in the BCR-ABL-transfected cells. Taken together, these results indicate that, in our systems, BCR-ABL confers resistance to UVC-induced damage in cells, and increases DNA repair efficiency in response to both UVC- and gamma-irradiation. ^