59 resultados para DNA-REPAIR
Resumo:
The discovery of expanded simple repeated sequences causing or associated with human disease has lead to a new area of research involved in the elucidation of how the expanded repeat causes disease and how the repeat becomes unstable. ^ To study the genetic basis of the (CTG)n repeat instability in the DMPK gene in myotonic dystrophy (DM1) patients, somatic cell hybrids were constructed between the lymphocytes of DM1 patients and a variety of Chinese hamster ovary (CHO) cell DNA repair gene deficient mutants. By using small pool PCR (SP-PCR), the instability of the (CTG)n can be quantitated for both the frequency and sizes of length change mutations. ^ Additional SP-PCR analysis on 2/11 subclones generated from this original hybrid showed a marked increase in large repeat deletions, ∼50%. A bimodal distribution of repeats was seen around the progenitor allele and at a large deleted product (within the normal range) with no intermediate products present. ^ To determine if the repair capacity of the CHO cell led to a mutator phenotype in the hamster and hybrid clones, SP-PCR was also done on 3 hamster microsatellites in a variety of hamster cell backgrounds. No variant alleles were seen in over 2500 genome equivalents screened. ^ Human-hamster hybrids have long been shown to be chromosomally unstable, yet information about the stability of repeated sequences was not known. To test if repeat instability was associated with either intact or non-intact human chromosomes, more than 300 microsatellite repeats on 13 human chromosomes (intact and non-intact) were analyzed in eight hybrid cells. No variants were seen between the hybrid and patient alleles in the hybrids. ^ To identify whether DM1 patients have a previously undetected level of genome wide instability or if the instability is truly locus specific, SP-PCR was done on 6 human microsatellites within the patient used to make the hybrid cells. No variants were seen in over 1000 genomes screened. ^ These studies show that the somatic cell hybrid approach is a genetically stable system that allows for the determination of factors that could lead to changes in microsatellite instability. It also shows that there is something inherent about the DM1 expanded (CTG)n repeat that it is solely targeted by, as of yet, and unknown mechanism that causes the repeat to be unstable. (Abstract shortened by UMI.)^
Resumo:
Non-melanoma skin cancer (NMSC) is the most frequently diagnosed form of cancer in United States. As in many other cancers, this slow growing malignancy manifests deregulated expression of apoptosis regulating proteins including bcl-2 family member proteins. To understand the role of apoptosis regulating protein in epidermal homeostasis and progression of NMSC, we investigated keratinocyte proliferation, differentiation and tumorigenesis in bcl-2 and bax null mice. The rate and the pattern of proliferation and spontaneous cell death were the same between the null and the control mice. Both bcl-2 and bax null epidermis showed decreased levels of cytokeratin 14 expression compared to the control littermates. Also, the gene knock out mice showed higher expression of cytokeratin 1 and loricrin in epidermis compared to the control mice. The apoptotic response to genotoxic agent, UV radiation (UVR), was assessed by counting sunburn cells. The bax null keratinocytes showed a resistance to apoptosis while bcl-2 null mice showed an increased susceptibility to cell death compared to the control mice. Moreover, we demonstrated an increase in tumor incidence in bax null mice compared to control littermates in the in vivo chemical carcinogenesis study. Next, we examined the tumor suppressor role of bax protein in NMSC by studying its participation in repair of UVR-mediated DNA lesions. In UVR treated primary keratinocytes from bax deficient mice, the level of CPD remaining was twice that of control cells at 48 hours. Similar results were obtained using embryonic fibroblasts from bax null and bax +/+ embryos, and also with a bax deficient prostate cancer cell line in which bax expression had been restored. However, the repair rate of 6-4 PP was unaffected by the absence of bax protein in all three of above mentioned cell types. In conclusion, bax protein may have a dual function in its role as tumor suppressor in NMSC. Bax may directly or indirectly facilitate DNA repair, or programmed cell death if DNA damage is too severe, thus, in either function, preserving genomic integrity following a genotoxic event. ^
Resumo:
Genetic instability in mammalian cells can occur by many different mechanisms. In the absence of exogenous sources of DNA damage, the DNA structure itself has been implicated in genetic instability. When the canonical B-DNA helix is naturally altered to form a non-canonical DNA structure such as a Z-DNA or H-DNA, this can lead to genetic instability in the form of DNA double-strand breaks (DSBs) (1, 2). Our laboratory found that the stability of these non-B DNA structures was different in mammals versus Escherichia coli (E.coli) bacteria (1, 2). One explanation for the difference between these species may be a result of how DSBs are repaired within each species. Non-homologous end-joining (NHEJ) is primed to repair DSBs in mammalian cells, while bacteria that lack NHEJ (such as E.coli), utilize homologous recombination (HR) to repair DSBs. To investigate the role of the error-prone NHEJ repair pathway in DNA structure-induced genetic instability, E.coli cells were modified to express genes to allow for a functional NHEJ system under different HR backgrounds. The Mycobacterium tuberculosis NHEJ sufficient system is composed of Ku and Ligase D (LigD) (3). These inducible NHEJ components were expressed individually and together in E.coli cells, with or without functional HR (RecA/RecB), and the Z-DNA and H-DNA-induced mutations were characterized. The Z-DNA structure gave rise to higher mutation frequencies compared to the controls, regardless of the DSB repair pathway(s) available; however, the type of mutants produced after repair was greatly dictated on the available DSB repair system, indicated by the shift from 2% large-scale deletions in the total mutant population to 24% large-scale deletions when NHEJ was present (4). This suggests that NHEJ has a role in the large deletions induced by Z-DNA-forming sequences. H-DNA structure, however, did not exhibit an increase in mutagenesis in the newly engineered E.coli environment, suggesting the involvement of other factors in regulating H-DNA formation/stability in bacterial cells. Accurate repair by established DNA DSB repair pathways is essential to maintain the stability of eukaryotic and prokaryotic genomes and our results suggest that an error-prone NHEJ pathway was involved in non-B DNA structure-induced mutagenesis in both prokaryotes and eukaryotes.
Resumo:
RecA in Escherichia coli and it's homologue, ScRad51 in Saccharomyces cerevisiae, play important roles in recombinational repair. ScRad51 homologues have been discovered in a wide range of organisms including Schizosaccharomyces pombe, lily, chicken, mouse and human. To date there is no direct evidence to describe that mouse Rad51(MmRad51) is involved in DNA double-strand break repair. In order to elucidate the role of MmRad51 in vivo, it was mutated by the embryonic stem (ES) cell/gene targeting technology in mice. The mutant embryos arrested in development shortly after implantation. There was a decrease in cell proliferation followed by programmed cell death, and trophectoderm-derived cells were sensitive to $\gamma$-radiation. Severe chromosome loss was observed in most mitotically dividing cells. The mutant embryos lived longer and developed further in a p53 mutant background; however, double-mutant embryonic fibroblasts failed to proliferate in tissue culture, reflecting the embryos limited life span. Based on these data, MmRad51 repairs DNA damage induced by $\gamma$-radiation, is needed to maintain euplody, and plays an important role in proliferating cells.^ Ku is a heterodimer of 70 and 80 kDs subunit, which binds to DNA ends and other altered DNA structures such as hairpins, nicks, and gaps. In addition, Ku is required for DNA-PK activity through a direct association. Although the biochemical properties of Ku and DNA-PKcs have been characterized in cells, their physiological functions are not clear. In order to understand the function of Ku in vivo, we generated mice homozygous for a mutation of the Ku80 gene. Ku80-deficient mice, like scid mice, showed severe immunodeficiency due to a impairment of V(D)J recombination. Mutant mice were semiviable and runted, cells derived from mutant embryos displayed hypersensitivity to $\gamma$-radiation, a decreased growth rate, a slow entry into S phase, altered colony size distributions, and a short life span. Based on these results, mutant cells and mice appeared to prematurely age. ^
Resumo:
The protein p53 binding protein one (53BP1) was discovered in a yeast two-hybrid screen that used the DNA binding domain of p53 as bait. Cloning of full-length 53BP1 showed that this protein contains several protein domains which help make up the protein, which include two tandem BRCT domains and a amino-terminal serine/glutamine cluster domain (SCD). These are two protein domains are often seen in factors that are involved in the cellular response to DNA damage and control of cell cycle checkpoints and we hypothesize that 53BP1 is involved in the cellular response to DNA damage. In support of this hypothesis we observe that 53BP1 is phosphorylated and undergoes a dramatic nuclear re-localization in response to DNA damaging agents. 53BP1 also interacts with several factors that are important in the cellular response to DNA damage, such as the BRCA1 tumor suppressor, ATM and Rad3 related (ATR), and the phosphorylated version of the histone variant H2AX. Mice deficient in 53BP1 display increased sensitivity ionizing radiation (IR), a DNA damaging agent that introduces DNA double strand breaks (DSBs). In addition, 53BP1-deficient mice do not properly undergo the process of class switch recombination (CSR). We also observe that when a defect in 53BP1 is combined with a defect in p53; the resulting mice have an increased rate of formation of spontaneous tumors, notably the formation of B and T lineage lymphomas. The T lineage tumors arise by two distinct mechanisms: one driven by defects in cell cycle regulation and a second driven by defects in the ability to repair DNA DSBs. The B lineage tumors arise by the inability to repair DNA damage and over-expression of the oncogene c-myc. ^ With these observations, we conclude that not only does 53BP1 function in the cellular response to DNA damage, but it also works in concert with p53 to suppress tumor formation. ^
Resumo:
DNA interstrand crosslinks (ICLs) are among the most toxic type of damage to a cell. Many ICL-inducing agents are widely used as therapeutic agents, e.g. cisplatin, psoralen. A bettor understanding of the cellular mechanism that eliminates ICLs is important for the improvement of human health. However, ICL repair is still poorly understood in mammals. Using a triplex-directed site-specific ICL model, we studied the roles of mismatch repair (MMR) proteins in ICL repair in human cells. We are also interested in using psoralen-conjugated triplex-forming oligonucleotides (TFOs) to direct ICLs to a specific site in targeted DNA and in the mammalian genomes. ^ MSH2 protein is the common subunit of two MMR recognition complexes, and MutSα and MutSβ. We showed that MSH2 deficiency renders human cell hypersensitive to psoralen ICLs. MMR recognition complexes bind specifically to triplex-directed psoralen ICLs in vitro. Together with the fact that psoralen ICL-induced repair synthesis is dramatically decreased in MSH2 deficient cell extracts, we demonstrated that MSH2 function is critical for the recognition and processing of psoralen ICLs in human cells. Interestingly, lack of MSH2 does not reduce the level of psoralen ICL-induced mutagenesis in human cells, suggesting that MSH2 does not contribute to error-generating repair of psoralen ICLs, and therefore, may represent a novel error-free mechanism for repairing ICLs. We also studied the role of MLH1, anther key protein in MMR, in the processing of psoralen ICLs. MLH1-deficient human cells are more resistant to psoralen plus UVA treatment. Importantly, MLH1 function is not required for the mutagenic repair of psoralen ICLs, suggesting that it is not involved in the error-generating repair of this type of DNA damage in human cells. ^ These are the first data indicating mismatch repair proteins may participate in a relatively error-free mechanism for processing psoralen ICL in human cells. Enhancement of MMR protein function relative to nucleotide excision repair proteins may reduce the mutagenesis caused by DNA ICLs in humans. ^ In order to specifically target ICLs to mammalian genes, we identified novel TFO target sequences in mouse and human genomes. Using this information, many critical mammalian genes can now be targeted by TFOs.^
Resumo:
Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease caused by germline mutations in DNA mismatch repair(MMR) genes. The nucleotide excision repair(NER) pathway plays a very important role in cancer development. We systematically studied interactions between NER and MMR genes to identify NER gene single nucleotide polymorphism (SNP) risk factors that modify the effect of MMR mutations on risk for cancer in HNPCC. We analyzed data from polymorphisms in 10 NER genes that had been genotyped in HNPCC patients that carry MSH2 and MLH1 gene mutations. The influence of the NER gene SNPs on time to onset of colorectal cancer (CRC) was assessed using survival analysis and a semiparametric proportional hazard model. We found the median age of onset for CRC among MMR mutation carriers with the ERCC1 mutation was 3.9 years earlier than patients with wildtype ERCC1(median 47.7 vs 51.6, log-rank test p=0.035). The influence of Rad23B A249V SNP on age of onset of HNPCC is age dependent (likelihood ratio test p=0.0056). Interestingly, using the likelihood ratio test, we also found evidence of genetic interactions between the MMR gene mutations and SNPs in ERCC1 gene(C8092A) and XPG/ERCC5 gene(D1104H) with p-values of 0.004 and 0.042, respectively. An assessment using tree structured survival analysis (TSSA) showed distinct gene interactions in MLH1 mutation carriers and MSH2 mutation carriers. ERCC1 SNP genotypes greatly modified the age onset of HNPCC in MSH2 mutation carriers, while no effect was detected in MLH1 mutation carriers. Given the NER genes in this study play different roles in NER pathway, they may have distinct influences on the development of HNPCC. The findings of this study are very important for elucidation of the molecular mechanism of colon cancer development and for understanding why some mutation carriers of the MSH2 and MLH1 gene develop CRC early and others never develop CRC. Overall, the findings also have important implications for the development of early detection strategies and prevention as well as understanding the mechanism of colorectal carcinogenesis in HNPCC. ^
Resumo:
Post-replication DNA mismatch repair plays crucial roles in mutation avoidance and maintenance of chromosome stability in both prokaryotes and eukaryotes. In humans, deficiency in this repair system leads to a predisposition for certain cancers. The biochemistry of this repair system has been best studied in a model bacterium Escherichia coli. In this thesis, regulation of expression of mutS, mutL and mutH genes, whose products mediate methyl-directed mismatch (MDM) repair in E. coli, is investigated. One-step affinity purification schemes were developed to purify E. coli MutS, MutL and MutH proteins fused to a His-6-affinity tag. His-6-MutS exhibited the same mismatch binding activity and specificity as the native MutS protein. Purified His-6-MutS, -MutL and -MutH proteins were used to develop quantitative Western blotting assays for amounts of MutS, MuL and MutH proteins under various conditions. It was found that the three proteins were present in relatively low amounts in exponentially growing cells and MutS and MutH were diminished in stationary-phase cells. Further studies indicated that the drop in the amounts of MutS and MutH proteins in stationary-phase cells was mediated through RpoS, a key global regulator of stationary-phase transition. In both exponential- and stationary-phase cells, MutS amount was also negatively regulated by the Hfq (HF-I) global regulator, which is required for RpoS translation, through an RpoS-independent mechanism. $\beta$-galactosidase assays of mutS-lacZ operon and gene fusions suggested that hfq regulates mutS posttranscriptionally, and RNase T2 protection assays revealed that Hfq destabilizes mutS transcripts in exponentially growing cells. To study the relation between regulation of MDM repair and mutagenesis, amounts of MutS, MutL and MutH were measured in starved cells undergoing adaptive mutagenesis. It was found that MutS amount dropped drastically, MutH amount dropped slightly, whereas MutL amount remained essentially constant in starved cells. Overexpression of MutL did not reverse the drop in the amounts of MutS or MutH protein. These results ruled out several explanations for a phenomenon in which overexpression of MutL, but not MutS, reversed adaptive mutagenesis. The findings further suggested that functional MutL is limiting during adaptive mutagenesis. The implications of regulation of the MDM repair are discussed in the context of mutagenesis, pathogenesis and tumorigenesis. ^
Resumo:
There is evidence that ultraviolet radiation (UVR) is increasing over certain locations on the Earth's surface. Of primary concern is the annual pattern of ozone depletion over Antarctica and the Southern Ocean. Reduction of ozone concentration selectively limits absorption of solar UV-B (290–320 nm), resulting in higher irradiance at the Earth's surface. The effects of ozone depletion on the human population and natural ecosystems, particularly the marine environment, are a matter of considerable concern. Indeed, marine plankton may serve as sensitive indicators of ozone depletion and UV-B fluctuations. Direct biological effects of UVR result from absorption of UV-B by DNA. Once absorbed, energy is dissipated by a variety of pathways, including covalent chemical reactions leading to the formation of photoproducts. The major types of photoproduct formed are cyclobutyl pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone dimer [(6-4)PD]. Marine plankton repair these photoproducts using light-dependent photoenzymatic repair or nucleotide excision repair. The studies here show that fluctuations in CPD concentrations in the marine environment at Palmer Station, Antarctica correlate well with ozone concentration and UV-B irradiance at the Earth's surface. A comparison of photoproduct levels in marine plankton and DNA dosimeters show that bacterioplankton display higher resistance to solar UVR than phytoplankton in an ozone depleted environment. DNA damage in marine microorganisms was investigated during two separate latitudinal transects which covered a total range of 140°. We observed the same pattern of change in DNA damage levels in dosimeters and marine plankton as measured using two distinct quantitative techniques. Results from the transects show that differences in photosensitivity exist in marine plankton collected under varying UVR environments. Laboratory studies of Antarctic bacterial isolates confirm that marine bacterioplankton possess differences in survival, DNA damage induction, and repair following exposure to UVR. Results from DNA damage measurements during ozone season, along a latitudinal gradient, and in marine bacterial isolates suggest that changes in environmental UVR correlate with changes in UV-B induced DNA damage in marine microorganisms. Differences in the ability to tolerate UVR stress under different environmental conditions may determine the composition of the microbial communities inhabiting those environments. ^
Resumo:
The ends of eukaryotic chromosomes are protected by specialized ribonucleoprotein structures termed telomeres. Telomeres protect chromosomes from end-to-end fusions, inappropriate repair and degradation. Disruption of this complex activates an ATM/ATR DNA damage response (DDR) pathway. One component of the complex is the Protection Of Telomeres 1 (POT1) protein, an evolutionarily conserved protein which binds single-stranded 3' overhang and is required for both chromosomal end protection and telomere length regulation. The mouse contains two POT1 orthologs, Pot1a and Pot1b. Here we show that both proteins colocalize with telomeres through interaction with the adapter protein TPP1. In addition, compared to Pot1a, the OB-folds of Pot1b possess less sequence specificity for telomeres. Disruption of POT1 proteins result in telomere dysfunction and activation of an ATR-dependent DDR at telomeres, suggesting that this response is normally suppressed by POT1 binding to the single-stranded G-overhang. ^ Telomeres are maintained by telomerase, and its absence in somatic cells results in telomere progressive loss that triggers the activation of p53. Telomere dysfunction initiates genomic instability and induces both p53-dependent replicative senescence and apoptosis to suppress tumorigenesis. In the absence of functional p53, this genomic instability promotes cancer. It was previously not known which aspect of the p53 dependent DNA damage response is important to suppress tumorigenesis initiated by dysfunctional telomeres. The p53R172P knock-in mouse, which is unable to induce apoptosis but retains intact cell cycle arrest/cellular senescence pathways, allowed us to examine whether p53-dependent apoptosis is a major tumor suppression pathway initiated in the setting of telomere dysfunction. Spontaneous tumorigenesis remains potently suppressed in late generation telomerase null mice possessing the p53P/P mutation. These results suggest that suppression of spontaneous tumorigenesis initiated by dysfunctional telomeres requires activation of a p53-dependent senescence pathway. In addition, we used another knock-in mouse model with a p53R172H (p53H) point mutation to test the hypothesis that telomere dysfunction promotes chromosomal instability and accelerates the onset of tumorigenesis in vivo in the setting of this most common gain-of-function mutation in the human Li Fraumeni cancer syndrome. We unexpectedly observed that telomerase null mice possessing dysfunctional telomeres in the setting of the p53H/+ mutation develop significantly fewer tumors, die prematurely and exhibit higher level of cellular senescence, apoptosis and elevated genomic instability compared to telomerase intact p53H/+ and telomerase null p53+/+ mice. These contrasting results thus link cancer and aging to the functional status of telomeres and the integrity of the p53 pathway. ^
Resumo:
The DNA replication polymerases δ and ϵ have an inherent proofreading mechanism in the form of a 3'→5' exonuclease. Upon recognition of errant deoxynucleotide incorporation into DNA, the nascent primer terminus is partitioned to the exonuclease active site where the incorrectly paired nucleotide is excised before resumption of polymerization. The goal of this project was to identify the cellular and molecular consequences of an exonuclease deficiency. The proofreading capability of model system MEFs with EXOII mutations was abolished without altering polymerase function.^ It was hypothesized that 3'→5' exonucleases of polymerases δ and ϵ are critical for prevention of replication stress and important for sensitization to nucleoside analogs. To test this hypothesis, two aims were formulated: Determine the effect of the exonuclease active site mutation on replication related molecular signaling and identify the molecular consequences of an exonuclease deficiency when replication is challenged with nucleoside analogs.^ Via cell cycle studies it was determined that larger populations of exonuclease deficient cells are in the S-phase. There was an increase in levels of replication proteins, cell population growth and DNA synthesis capacity without alteration in cell cycle progression. These findings led to studies of proteins involved in checkpoint activation and DNA damage sensing. Finally, collective modifications at the level of DNA replication likely affect the strand integrity of DNA at the chromosomal level.^ Gemcitabine, a DNA directed nucleoside analog is a substrate of polymerases δ and ϵ and exploits replication to become incorporated into DNA. Though accumulation of gemcitabine triphosphate was similar in all cell types, incorporation into DNA and rates of DNA synthesis were increased in exonuclease defective cells and were not consistent with clonogenic survival. This led to molecular signaling investigations which demonstrated an increase in S-phase cells and activation of a DNA damage response upon gemcitabine treatment.^ Collectively, these data indicate that the loss of exonuclease results in a replication stress response that is likely required to employ other repair mechanisms to remove unexcised mismatches introduced into DNA during replication. When challenged with nucleoside analogs, this ongoing stress response coupled with repair serves as a resistance mechanism to cell death.^
Resumo:
DNA ligase and DNA polymerase play important roles in DNA replication, repair, and recombination. Frequencies of spontaneous and chemical- and physical-induced mutations are correlated to the fidelity of DNA replication. This dissertation elucidates the mechanisms of the DNA ligation reaction by DNA ligases and demonstrates that human DNA ligase I and DNA polymerase $\alpha$ are the molecular targets for two metal ions, Zn$\sp{2+}$ and Cd$\sp{2+},$ and an anticancer drug, F-ara-ATP.^ Human DNA ligases were purified to homogeneity and their AMP binding domains were mapped. Although their AMP-binding domains are similar, there could be difference between the two ligases in their DNA binding domains.^ The formation of the AMP-DNA intermediate and the successive ligation reaction by human DNA ligases were analyzed. Both reactions showed their substrate specificity for ligases I and II, required Mg2+, and were inhibited by ATP.^ A protein inhibitor from HeLa cells and specific for human DNA ligase I but not ligase II and T4 ligase was discovered. It reversibly inhibited DNA ligation activity but not the AMP-binding activity due to the formation of a reversible ligase I-inhibitor complex.^ F-ara-ATP inhibited human DNA ligase I activity by competing with ATP for the AMP-binding site of DNA ligase I, forming a ligase I-F-ara-AMP complex, as well as when it was incorporated at 3$\sp\prime$-terminus of DNA nick by DNA polymerase $\alpha.$^ All steps of the DNA ligation reaction were inhibited by Zn$\sp{2+}$ and Cd$\sp{2+}$ in a concentration-dependent manner. Both ions did not show the ability to change the fidelity of DNA ligation reaction catalyzed by human DNA ligase I. However, Zn$\sp{2+}$ and Cd$\sp{2+}$ showed their contradictory effects on the fidelity of the reaction by human DNA polymerase $\alpha.$ Zn$\sp{2+}$ decreased the frequency of misinsertion but less affected that of mispair extension. On the contrary, Cd$\sp{2+}$ increased the frequencies of both misinsertion and mispair extension at very low concentration. Our data provided strong evidence in the molecular mechanisms for the mutagenicity of zinc and cadmium, and were comparable with the results previously reported. ^
Resumo:
DNA-directed nucleoside analogues, such as ara-C, fludarabine, and gemcitabine, are antimetabolites effective in the treatment of a variety of cancers. However, resistance to nucleoside analogue-based chemotherapy in treatments is still a major problem in therapy. Therefore, it is essential to develop rationales for optimizing the use of nucleoside analogues in combination with other anticancer drugs or modalities such as radiation. The present study focuses on establishing mechanism-based combination strategy to overcome resistance to nucleoside analogues. ^ I hypothesized that the cytostatic concentrations of nucleoside analogues may cause S-phase arrest by activating an S-phase checkpoint that consists of a series of kinases. This may allow cells to repair damaged DNA over time and spare cytotoxicity. Thus, the ability of cells to enact an S-phase arrest in response to incorporation of potentially lethal amounts of nucleoside analogue may serve as a mechanism of resistance to S-phase-specific agents. As a corollary, the addition of a kinase inhibitor, such as UCN-01, may dysregulate the checkpoint response and abrogate the survival of S-phase-arrested cells by suppression of the survival signaling pathways. Using gemcitabine as a model of S-phase-specific nucleoside analogues in human acute myelogenous leukemia ML-1 cells, I demonstrated that cells arrested in S-phase in response to cytostatic conditions. Proliferation continued after washing the cells into drug-free medium, suggesting S-phase arrest served as a resistance mechanism of cancer cells to spare cytotoxicity of nucleoside analogues. However, nontoxic concentrations of UCN-01 rapidly killed S-phase-arrested cells by apoptosis. Furthermore, the molecular mechanism for UCN-01-induced apoptosis in S-phase-arrested cells was through inhibition of survival pathways associated with these cells. In this regard, suppression of the PI 3-kinase-Akt-Bad survival pathway as well as the NF-κB signaling pathway were associated with induction of apoptosis in S-phase-arrested cells by UCN-01, whereas the Ras-Raf-MEK-ERK pathway appeared not involved. This study has provided the rationales and strategies for optimizing the design of effective combination therapies to overcome resistance to nucleoside analogues. In fact, a clinical trial of the combination of ara-C with UCN-01 to treat relapsed or refractory AML patients has been initiated at U.T.M.D. Anderson Cancer Center. ^
Resumo:
The p53 tumor suppressor protein plays a major role in cellular responses to anticancer agents that target DNA. DNA damage triggers the accumulation of p53, resulting in the transactivation of genes, which induce cell cycle arrest to allow for repair of the damaged DNA, or signal apoptosis. The exact role that p53 plays in sensing DNA damage and the functional consequences remain to be investigated. The main goal of this project was to determine if p53 is directly involved in sensing DNA damage induced by anticancer agents and in mediating down-stream cellular responses. This was tested in two experimental models of DNA damage: (1) DNA strand termination caused by anticancer nucleoside analogs and (2) oxidative DNA damage induced by reactive oxygen species (ROS). Mobility shift assays demonstrated that p53 and DNA-PK/Ku form a complex that binds DNA containing the anticancer nucleoside analog gemcitabine monophosphate in vitro. Binding of the p53-DNA-PK/Ku complex to the analog-containing DNA inhibited DNA strand elongation. Furthermore, treatment of cells with gemcitabine resulted in the induction of apoptosis, which was associated with the accumulation of p53 protein, its phosphorylation, and nuclear localization, suggesting the activation of p53 to trigger apoptosis following gemcitabine induced DNA strand termination. The role of p53 as a DNA damage sensor was further demonstrated in response to oxidative DNA damage. Protein pull-down assays demonstrated that p53 complexes with OGG1 and APE, and binds DNA containing the oxidized DNA base 8-oxoG. Importantly, p53 enhances the activities of APE and OGG1 in excising the 8-oxoG residue as shown by functional assays in vitro. This correlated with the more rapid removal of 8-oxoG from DNA in intact cells with wild-type p53 exposed to exogenous ROS stress. Interestingly, persistent exposure to ROS resulted in the accelerated onset of apoptosis in cells with wild-type p53 when compared to isogenic cells lacking p53. Apoptosis in p53+/+ cells was associated with accumulation and phosphorylation of p53 and its nuclear localization. Taken together, these results indicate that p53 plays a key role in sensing DNA damage induced by anticancer nucleoside analogs and ROS, and in triggering down-stream apoptotic responses. This study provides new mechanistic insights into the functions of p53 in cellular responses to anticancer agents. ^