415 resultados para Chemistry, Biochemistry|Health Sciences, Immunology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor specific immunity is mediated by cytotoxic T lymphocytes (CTL) that recognize peptide antigen (Ag) in the context of major histocompatibility complex (MHC) class I molecules and by helper T (Th) lymphocytes that recognize peptide Ag in the context of MHC class II molecules. The purpose of this study is (1) to induce or augment the immunogenicity of nonimmunogenic or weakly immunogenic tumors by genetic modification of tumor cells, and (2) to use these genetically altered cells in cancer immunotherapy. To study this, I transfected a highly tumorigenic murine melanoma cell line (K1735) that did not express constitutively either MHC class I or II molecules with syngeneic cloned MHC class I and/or class II genes, and then determined the tumorigenicity of transfected cells in normal C3H mice. K1735 transfectants expressing either $\rm K\sp{k}$ or $\rm A\sp{k}$ molecules alone produced tumors in normal C3H mice, whereas most transfectants that expressed both molecules were rejected in normal C3H mice but produced tumors in nude mice. The rejection of K1735 transfectants expressing $\rm K\sp{k}$ and $\rm A\sp{k}$ Ag in normal C3H mice required both $\rm CD4\sp+$ and $\rm CD8\sp+$ T cells. Interestingly, the $\rm A\sp{k}$ requirement can be substituted by IL-2 because transfection of $\rm K\sp{k}$-positive/A$\sp{\rm k}$-negative K1735 cells with the IL-2 gene also resulted in abrogation of tumorigenicity in normal C3H mice but not in nude mice. In addition, 1735 $(\rm I\sp+II\sp+)$ transfected cells can function as antigen presenting cells (APC) since they could process and present native hen egg lysozyme (HEL) to HEL specific T cell hybridomas. Furthermore, the transplantation immunity induced by K1735 transfectants expressing both $\rm K\sp{k}$ and $\rm A\sp{k}$ molecules completely cross-protected mice against challenge with $\rm K\sp{k}$-positive transfectants but weakly protected them against challenge with parental K1735 cells or $\rm A\sp{k}$-positive transfectants. Finally, I demonstrated that MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells can function as anti-cancer vaccines since they can abrogate the growth of established tumors and metastasis.^ In summary, my results indicate that expression of either MHC class I or II molecule alone is insufficient to cause the rejection of K1735 melanoma in syngeneic hosts and that both molecules are necessary. In addition, my data suggest that the failure of $\rm K\sp{k}$-positive K1735 cells to induce a primary tumor-rejection response in normal C3H mice may be due to their inability to induce the helper arm of the anti-tumor immune response. Finally, the ability of MHC $(\rm I\sp+II\sp+)$ or $\rm K\sp{k}$-positive/IL-2-positive cells to prevent growth of established tumors or metastasis suggests that these cell lines can serve as potential vaccines for the immunotherapy of cancer. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human pro-TNF-$\alpha$ is a 26 kd type II transmembrane protein, and it is the precursor of 17 kd mature TNF. Pro-TNF release mature from its extracellular domain by proteolytic cleavage between resideu Ava ($-$1) and Val (+1). Both forms of TNF are biologically active and the native form of mature TNF is a bell-shaped trimer. The structure of pro-TNF was studied both in intact cell system and in an in vitro translation system by chemical crosslinking. We found that human pro-TNF protein exist as a trimer in intact cells (LPS-induced THP-1 cells and TNF cDNA transfected COS-3 cells) and this trimeric structure is assembled intracellularly, possibly in the ER. By analysis several deletion mutants, we observed a correlation between expression of pro-TNF cytotoxicity in a juxtacrine fashion and detection of the trimer, suggesting the trimeric structure is very important for its biologic activity. With a series of deletion mutants in the linking domain, we found that the small deletion did not block the cleavage and large deletion did regardless of the presence or absence of the native cleavage site, suggesting that the length of the residues between the plasma membrane and the base of the trimer determines the rate of the cleavage, possibly by blocking the accessibility of the cleavage enzyme to its action site. Our data also suggest that the native cleavage site is not sufficient for the release of mature TNF and alternative cleavage site(s) exists. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Class I major histocompatibility complex (MHC) molecules induce either accelerated rejection or prolonged survival of allografts, presumably because of the presence of immunogenic or tolerogenic epitopes, respectively. To explore the molecular basis of this phenomenon, three chimeric class I molecules were constructed by substituting the rat class I RT1.A$\sp{\rm a}$ sequences with the N-terminus of HLA-A2.1 (N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$), the $\alpha\sb1$ helix (h) with $\rm\alpha\sb{1h}\sp{u}$ sequences ( ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$) or the entire $\alpha\sb2$ domain (d) with $\rm\alpha\sb{2d}\sp{u}$ sequences ( ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$). Wild type (WT) and chimeric cDNAs were sequenced prior to transfection into Buffalo (BUF; RT1$\sp{\rm b}$) hepatoma cells. Stable transfectants were injected subcutaneously (s.c.) into different hosts 7 days prior to challenge with a heart allograft. In BUF hosts, chimeric ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ accelerated the rejection of Wistar Furth (WF; RT1$\sp{\rm u}$) heart allografts, but had no effect on the survival of ACI (RT1$\sp{\rm a}$) grafts. In contrast, the ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ (containing $\rm\alpha\sb{1d}\sp{a}$ sequences) immunized BUF recipients toward RT1$\sp{\rm a}$ grafts. In WF hosts, WT-RT1.A$\sp{\rm a}$ was a potent immunogen and accelerated ACI graft rejection, N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$ was less effective and ($\rm\alpha\sb{\rm 1h}\sp{u}\rbrack$-RT1.A$\sp{\rm a}$ was not immunogenic. Thus, dominant and subdominant epitopes inducing in vivo sensitization to cardiac allografts are present in the $\alpha\sb1$ helix and the N-terminus, respectively. The failure of ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants (containing recipient-type $\alpha\sb{\rm 2d}$ sequences) to sensitize WF hosts toward ACI (RT1$\sp{\rm a}$) grafts, despite the presence of donor-type immunogenic $\alpha\sb{\rm 1d}\sp{\rm a}$, suggests that "self-$\alpha\sb2$" sequences displayed on chimeric antigens interfere with immunogenicity. The ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants injected s.c. prolonged the survival of WF (RT1$\sp{\rm u}$) hearts in ACI (RT1$\sp{\rm a}$) recipients. Furthermore, intra-portal injection of extracts from ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$, but not WT-RT1.A$\sp{\rm a}$ or RT1.A$\sp{\rm u}$, in conjunction with a brief cyclosporine course rendered ACI hosts permanently and specifically tolerant to donor-type WF cardiac allografts. Thus, immunodominant allodeterminants are present in the $\alpha\sb1$, but not the $\alpha\sb2$, domain of rat class I MHC molecules. Furthermore, the $\rm\alpha\sb{1h}\sp{u}$ immunogenic epitopes trigger tolerogenic responses when flanked by host-type N-terminal$\sp{\rm a}$ and $\rm\alpha\sb{2d}\sp{a}$ sequences. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An in vitro model using highly purified freshly isolated T cells demonstrated that immobilized ligands for the integrin $\alpha4\beta1$ could cooperate to enhance mitogen signals delivered by coimmobilized anti-CD3 specfic monoclonal antibody OKT3. Costimulation through $\alpha4\beta1$ integrin lead to enhanced proliferation which depended on expression of both IL-2 as well as IL-2 receptor. The transcription factors NF-AT, AP-1, and NF-$\kappa$B, which are involved in the regulation of IL-2 as well as other cytokine genes, were weakly induced by anti-CD3 stimulation alone in electromobility shift assays, but were augmented significantly with $\alpha4\beta1$ costimulation. These results suggested that $\alpha4\beta1$ ligands delivered a growth promoting signal which could synergize with signals induced by engagement of the TCR/CD3 complex, and also suggested a dual function for integrins in both localization and subsequent delivery of a growth promoting signal for T lymphocytes. Integrin involvement in lymphocyte trafficking has been employed as a model for understanding tumor cell metastasis. Therefore we have extended the duality of integrin function in both homing and subsequent delivery of a growth promoting signal to include a role for integrins in providing growth stimulation for tumor cells. Using a gastric derived tumor line, inhibition of adhesion to substrate leads to G0/G1 cell cycle arrest, reduced cyclin A expression, and reduced phospholipid synthesis. This effect could be reversed upon $\alpha2\beta1$ integrin mediated reattachment to collagen. These observations demonstrated a role for an integrin in the growth regulation of a tumor line. The small GTP-binding protein Rho, implicated in phospholipid synthesis, can be inactivated by the ADP-ribosylation exoenzyme C3 from C. botulinum. Addition of C3 to cell cultures inhibited the growth promoting effect due to integrin mediated adhesion. Taken together, these results are consistent with a model for cooperative interaction between integrins and Rho leading to enhanced phospholipid synthesis and mitogen signaling. This model may provide a basis for understanding the phenomena of integrin costimulation in T cell activation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased serum interleukin-6 (IL-6) is a poor prognostic factor for patients with lymphoma. This may be related to the fact that IL-6 has been shown to be an autocrine and paracrine growth factor for lymphoma cells. We have investigated the regulation of IL-6 in two lymphoma cell lines which produce IL-6 as an autocrine growth factor. The cell lines, LY3 and LY12, were established from two patients with non-Hodgkin's lymphoma. One patient had diffuse large cell lymphoma (LY3), whereas the other had small noncleaved cell lymphoma (LY12). There was no rearrangement or amplification of the IL-6 gene, but we detected IL-1 alpha and TNF production in addition to IL-6. We investigated the effect of inhibitors of IL-1 and TNF on IL-6 production in LY3 and LY12. Our results show that IL-6 production is mainly secondary to endogenous IL-1 production in LY3 cells, however LY12 cells produce IL-6 via a different mechanism since neither anti-IL-1 nor anti-TNF significantly inhibited IL-6 production.^ Transfection of LY12 cells with wildtype and mutant IL-6 promoter-chloramphenicol acetyl transferase constructs, showed increased activity of a trans-acting factor that binds to the NF-kB motif. Therefore, we determined whether there were abnormalities in members of the NF-kB family of transcription factors, such as p65, p50, p52/lyt-10 or rel, which bind to kB motifs. We found increased expression of the p52/lyt-10 transcription factor and activation of the NF-kB pathway in LY12. However, expression of p50, p65 and rel was not increased in LY12 cells. Future investigations could be aimed at determining the effect of inhibitors of NF-kB on IL-6 production. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under normal physiological conditions, cells of the hematopoietic system produce Interleukin-1$\beta$(IL-1$\beta)$ only when a stimulus is present. Leukemic cells, however, can constitutively produce this cytokine without an exogenous source of activation. In addition, IL-1$\beta$ can operate as an autocrine and/or paracrine growth factor for leukemic blasts. In order to study the cellular basis for this aberrant production, we analyzed two leukemic cell lines (B1 and W1) which express high levels of IL-1$\beta$ and use IL-1$\beta$ as an autocrine growth factor. Initial studies demonstrated: (1) lack of rearrangement and/or amplification in the IL-1$\beta$ gene and its promoter; and (2) intact responsiveness to regulators such as cycloheximide and dexamethasone, implying that the molecular defect was upstream. Analysis of the Ras inducible transcription factors by gel shift assay demonstrated constitutive transcription factor binding in the IL-1$\beta$ promoter. Furthermore, RAS mutations were found at codon 12 in the K-RAS and N-RAS genes in the B1 and W1 cells, respectively. To deduce the effects of activated Ras on IL-1$\beta$ expression, two classes of farnesyltransferase inhibitors and an adenoviral vector expressing antisense targeted to K-RAS were utilized. The farnesyltransferase inhibitors perillyl alcohol and B581 were able to reduce IL-1$\beta$ levels by 80% and 50% in the B1 cells, respectively. In W1 cells, IL-1$\beta$ was reduced by 60% with 1mM perillyl alcohol. Antisense RNA targeted to K-RAS confirmed the results demonstrating a 50% reduction in IL-1$\beta$ expression in the B1 cells. In addition, decreased binding at the crucial NF-IL6/CREB binding site correlated with decreased IL-1$\beta$ production and cellular proliferation implying that this site was a downstream effector of Ras signaling. Our data suggest that mutated RAS genes may be responsible for autocrine IL-1$\beta$ production in some leukemias by stimulating signal transduction pathways that activate the IL-1$\beta$ promoter. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tumor necrosis factor receptor p75/80 ((TNF-R p75/80) is a 75 kDa type 1 transmembrane protein expressed predominately on cells of hematopoietic lineage. TNF-R p75/80 belongs to the TNF receptor superfamily characterized by cysteine-rich extracellular regions composed of three to six disulfide-linked domains. In the present report, we have characterized, for the first time, the complete gene structure for human TNF-R p75/80 which spans approximately 43 kbp. The gene consists of 10 exons (ranging from 34 bp to 2.5 kbp) and 9 introns (343 bp to 19 kbp). Consensus elements for transcription factors involved in T cell development and activation were noted in the 5$\sp\prime$ flanking region including TCF-1, Ikaros, AP-1, CK-2, IL-6RE, ISRE, GAS, NF-$\kappa$B and SP1, as well as an unusually high GC content and CpG frequency that appears characteristic of some TNF-R family members. The unusual (GATA)$\sb{\rm n}$ and (GAA)(GGA) repeats found within intron 1 may prove useful for further genome analysis within the 1p36 chromosomal locus. The human TNF-R p75/80 gene structure will permit further assessment of its involvement in normal hematopoietic cell development and function, autoimmune disease, and non-random translocations in hematopoietic malignancies. The region 1.8 kb 5$\sp\prime$ of the ATG was able to drive luciferase expression when transfected into cell lines expressing TNF-R p75/80. Further characterization of the 5$\sp\prime$-regulatory region will aid in determining factors and signal transduction pathways involved in regulating TNF-R p75/80 expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of hematopoietic precursor cell with bone marrow stromal cells is assumed to be important to the survival of hematopoietic precursor cells during hematopoietic cell long-term culture. Early hematopoietic stem cells are preferentially found within the stromal adherent cell fraction in primary long-term bone marrow cultures. The purpose of this dissertation was to understand the molecular mechanisms that govern these interactions for the regulation of survival and proliferation of early versus late hematopoietic cells.^ Monoclonal antibodies to the VLA-4 recognize the alpha4 beta1 integrin receptor on human hematopoietic cells. This monoclonal antibody blocks the adhesion between early hematopoietic progenitor cells (CD34 selected cells) and stromal cells when added to cultures of these cells. Addition of the VLA-4 monoclonal antibody to cultures of stromal cells and CD34 selected cells was shown to induce apoptosis of CD34 selected cells in these CD34 selected cell/stromal cell cocultures, as measured by the terminal deoxynucleotidyl transferase (TdT)-mediated dUTP-biotin nick end-labeling method. In contrast to these experiments with early hematopoietic progenitor cells (CD34+), the level of adhesion between more differentiated cells (unfractionated hematopoietic cells) and stromal cells was not significantly altered by addition of the anti-VLA-4 monoclonal antibody. Similarly, the level of apoptosis of unfractionated hematopoietic cells was not significantly increased by the addition of anti-VLA-4 monoclonal antibody to cultures of the latter cells with stromal cells. The binding of the unfractionated cells is less than that of the CD34 selected. Since there is no difference between the alpha4 beta1 integrin expression level of the early and late myeloid cells, there may be a difference in the functional state of the integrin between the early and late myeloid cells. We also show that CD34+ selected precursor cells proliferate at a higher rate when these cells are plated on recombinant VCAM-1 molecules. These data indicate that the alpha4beta1 integrin receptor (VLA-4) plays a central role in the apoptosis rescue function which results from the anchorage-dependent growth of the CD34 selected early hematopoietic cells on stromal cells. The data suggest that these apoptosis rescue pathways have less significance as the cells mature and become anchorage-independent in their growth. These data should assist in the design of systems for the ex vivo proliferation and transduction of early hematopoietic cells for genetic therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patients with head and neck squamous cell carcinoma (HNSCC) demonstrate abnormal cell-mediated immunity which is most pronounced at the primary tumor site. Therefore, we tested whether this aberrant immunity could be due to tumor-derived cytokines. We investigated the presence of cytokine mRNA and protein in 8 HNSCC-derived cell lines; RT-PCR results indicated mRNA's for IL-1$\alpha$ and TGF-$\alpha$ (8/8), TGF-$\beta$ (7/8), IL-1$\beta$ (7/8), IL-4 and IL-6 (4/8). IL-2, IFN-$\gamma,$ and TNF-$\alpha$ mRNA was not detected. Supernatants from 6 of these cell lines were analyzed by ELISA and IL-1$\alpha,$ IL-1$\beta,$ and IL-6 were markedly increased compared to HPV-16 immortalized human oral keratinocytes. IL-1$\alpha$ was found in the highest concentration $>$IL-6 $>$ IL-1$\beta.$^ To approach the mechanisms of cytokine regulation, 4 cell lines were compared for HPV DNA presence, p53 status, and cytokine expression. An association between HPV DNA and cytokine expression was not found. However, cell lines secreting the most IL-6 had mutant p53 and/or HPV 16 E6/E7 expression. Further regulatory investigations revealed that exogenous IL-1$\alpha$ and/or IL-1$\beta$ minimally stimulated the proliferation of 2/3 cell lines, as well as strongly induced IL-6 production in 3/3; this effect was completely abrogated by IL-1Ra. IL-1Ra also inhibited the secretion of IL-1$\alpha$ and IL-1$\beta$ in 2/3 cell lines. These data suggest an IL-1 autocrine loop in certain HNSCC cell lines. Because IL-2 induces IL-1 and is used in therapy of HNSCC, the expression of IL-2 receptor was also investigated; IL-2 $\alpha$ and $\beta$ subunits were detected in 3/3 cell lines and $\gamma$ subunits was detected in one. Exogenous IL-2 inhibited the proliferation, but stimulated the secretion of IL-1$\alpha$ in 2/3, and IL-1$\beta$ and IL-6 in 1/3 cell lines.^ To determine if our cell line findings were applicable to patients, immunohistochemistry was performed on biopsies from 12 invasive tumors. Unexpectedly, universal intracellular production of IL-1$\alpha,$ IL-1$\beta,$ and IL-6 protein was detected. Therefore, the aberrant elaboration of biologically active IL-1 and IL-6 may contribute to altered immune status in HNSCC patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and purpose. Sialyl-Tn(STn) represents an aberrantly glycosylated mucin epitope which is expressed in breast cancer and other adenocarcinomas and is an important target for the development of novel immunotherapeutic approaches. It is a marker of adverse prognosis in colon and ovarian cancer, but information about its prognostic impact in breast cancer is limited. The primary aim of the present study was to investigate the influence of STn expression on outcome of invasive breast cancer in 207 women who received anthracyline-containing adjuvant chemotherapy in a prospective clinical trial.^ Methods. Expression of STn was determined by an immunohistochemical procedure using the B72.3 monoclonal antibody. The extent of staining was determined by two observers using a 0 through 4 point scale, with 0 representing $<$5% of cells staining; 1: 5-25%; 2: 26-50%; 3: 51-75%; and 4: $>$75%. Intraobserver and interobserver agreement was.78-.92 (kappa). Kaplan-Meier and Cox proportional regression survival analyses were used to compare STn-negative and STn-positive patients.^ Results. Forty-eight (23%) of the 207 specimens demonstrated positive staining of STn. With a median follow-up of five years, STn-positivity was associated with a higher 5-year recurrence-free survival time than STn-negativity (67% vs. 80%, respectively; p = 0.03). STn expression was significantly associated with menopausal status (p = 0.04) but not other conventional prognostic markers. The risk of breast cancer recurrence and death was assessed by multivariate Cox regression analyses with adjustment for lymph node status, tumor size, menopausal status, hormone receptor status, nuclear grade, S-phase fraction and ploidy. In the final multivariate model for recurrence-free survival, the three factors that showed prognostic significance were: lymph node status (hazard ratio (HR) 3.04, 95% confidence interval (CI) 1.08-8.49), STn expression (HR 2.02, 95% CI 1.09-3.73), and tumor size (HR 1.96, 95% CI 1.05-3.64). STn was also associated with worse overall survival (HR 2.16, 95% CI 0.95-4.92) in multivariate analysis.^ Conclusion. STn antigen was shown to be a predictor of poor outcome in breast cancer. This tumor-associated antigen may be a valuable marker for identifying individuals at high risk of developing recurrent disease who may benefit from adjuvant therapy targeted at STn following definitive local therapy. Further study is needed to clarify the biologic and prognostic role of STn in breast cancer. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radioimmunotherapy (RIT) with i.v. administered radiolabeled IgG can selectively irradiate tumor cells in vivo. However, it only provides effective therapy for lymphomas. Intracompartmental RIT with radiolabeled human monoclonal IgM may allow curative treatment of solid tumors by increasing tumor deposition of radioactivity, reducing systemic toxicity and allowing repeated administration. This hypothesis was tested in nude mouse models with IgM radiolabeled with indium-111 $\rm(\sp{111}In)$ or yttrium-90 $\rm(\sp{90}Y).$ The use of two radioisotopes, $\rm\sp{111}In$ for imaging and $\rm\sp{90}Y$ for therapy, allow for more quantitative and cautious development of RIT.^ Radiolabled 2B12, an IgM reactive with human ovarian carcinomas was tested by i.v. and intraperitoneal (i.p.) administration in nude mice bearing i.p. nodules of a human ovarian carcinoma cell line (SKOV3 NMP2). Radiolabeled CR4E8, an IgM reactive with human squamous cell carcinomas was tested by i.v. and intralesional (i.l.) administration in nude mice bearing subcutaneous tumors of a human head and neck squamous cell carcinoma cell line (886). These two models were selected to test proof of concept. Radiolabeled irrelevant IgM (CH-1B9), and $\rm\sp{90}Y$-aggregate served as specificity controls. Biodistribution was performed by excising, weighing and then measuring the radioactivity of tumor and normal organs. Therapy was conducted with i.p. $\rm\sp{90}Y$-labeled 2B12 using both single and fractionated administration and with i.l. $\rm\sp{90}Y$-labeled CR4E8 using single administration. Mice were monitored for tumor response, survival and systemic toxicity.^ Intracompartmental administration of radiolabeled IgM produced immediate high and prolonged tumor deposition of radioactivity with low normal tissue uptake. In contrast, i.v. administration resulted in low tumor, but high liver and spleen uptake. Similar biodistributions were demonstrated for $\rm\sp{111}In$- and $\rm\sp{90}Y$-labeled IgM. Intraperitoneal therapy with $\rm\sp{90}Y$-labeled 2B12 increased survival by approximately 12 days for every 100 $\rm\mu Ci$ of activity without significant toxicity for single (0-300 $\rm\mu Ci)$ and fractionated (150-510 $\rm\mu Ci)$ administration. Intralesional therapy with $\rm\sp{90}Y$-labeled CR4E8 (150-400 $\rm\mu Ci)$ induced prolonged complete regressions. Significant local or systemic toxicity was not observed.^ Intracompartmental RIT with radiolabeled tumor-reactive human monoclonal IgM can selectively irradiate tumor cells. Intracompartmental radiolabled IgM can significantly extend the survival of treated mice with minimal toxicity. It deserves further development as a new cancer therapy. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In our studies we have focused on the issue of variability and diversity of the $\gamma$ (or $\delta)$ chain T cell receptor (TCR) genes by studying cDNA transcripts in peripheral blood mononuclear cells or $\gamma\delta$ TCR+ T cell clones. The significance of these studies lies in the better understanding of the molecular biology of the $\gamma\delta$ T cell receptor as well as in answering the question whether certain molecular forms predominate in $\gamma\delta$ T cells exhibiting specific immunologic functions. We establish that certain $\gamma$-chain TCR genes exhibit particular patterns of rearrangements in cDNA transcripts in normal individuals. V$\gamma$I subgroup were shown to preferentially rearrange to J$\gamma$2C$\gamma$2 gene segments. These preferential VJC rearrangements, may have implications regarding the potential for diversity and polymorphism of the $\gamma$-chain TCR gene. In addition, the preferential association of V$\gamma$I genes with J$\gamma$2C$\gamma$2, which encode a non-disulfide-linked $\gamma\delta$ TCR, suggests that $\gamma$ chains utilizing V$\gamma$I are predominantly expressed as non-disulfide-linked $\gamma\delta$ TCR heterodimers. The implications of this type of expression remain to be determined. We identified two alternative splicing events of the $\gamma$-chain TCR genes occurring in high frequency in all the normal individuals examined. These events may suggest additional mechanisms of regulation and control as well as diversification of $\gamma\delta$ TCR gene expression. The question whether particular forms of $\gamma$ or $\delta$-chain TCR genes are involved in HLA Class I recognition by specific $\gamma\delta$ cytotoxic T cell clones was addressed. Our results indicated that the T cell clones expressed identical $\gamma$ but distinct $\delta$-chains suggesting that the specificity for recognition of HLA-A2 or HLA-A3 may be conferred by the $\delta$-chain TCR. The issue of the degree of diversity and polymorphism of the $\delta$-chain TCR genes in a patient with a primary immunodeficiency (Omenn's syndrome) was addressed. A limited pattern of rearrangements in peripheral blood transcripts was found, suggesting that a limited $\gamma\delta$ TCR repertoire may be expressed in this particular primary immunodeficiency syndrome. Overall, our findings suggest that $\delta$-chain TCR genes exhibit the potential for significant diversity and that there are certain preferential patterns of expression that may be associated with particular immunologic functions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Immune dysfunction is encountered during spaceflight. Various aspects of spaceflight, including microgravity, cosmic radiation, and both physiological and psychological stress, may perturb immune function. We sought to understand the impact of microgravity alone on the cellular mechanisms critical to immunity. Clinostatic RWV bioreactors that simulate aspects of microgravity were used to analyze the response of human PBMC to polyclonal and oligoclonal activation. PHA responsiveness in the RWV bioreactor was almost completely diminished. IL-2 and IFN-$\gamma$ secretion was reduced whereas IL-1$\beta$ and IL-6 secretion was increased, suggesting that monocytes may not be as adversely affected by simulated microgravity as T cells. Activation marker expression (CD25, CD69, CD71) was significantly reduced in RWV cultures. Furthermore, addition of exogenous IL-2 to these cultures did not restore proliferation. Antigen specific T cell activation, including the mixed-lymphocyte reaction, tetanus toxoid responsiveness, and Borrelia activation of a specific T cell line, was also suppressed in the RWV bioreactor.^ The role of altered culture conditions in the suppression of T cell activation were considered. Potential reduced cell-cell and cell-substratum interactions in the RWV bioreactor may play a role in the loss of PHA responsiveness. However, PHA activation in Teflon culture bags that limit cell-substratum interactions was not affected. Furthermore, increasing cell-population density, and therefore cell-cell interactions, in the RWV cultures did not help restore PHA activation. However, placing PBMC within small collagen beads did partially restore PHA responsiveness. Finally, activation of purified T cells with crosslinked CD2/CD28 or CD3/CD28 antibody pairs, which does not require costimulation through cell-cell contact, was completely suppressed in the RWV bioreactor suggesting a defect internal to the T cell.^ Activation of both PBMC and purified T cells with PMA and ionomycin was unaffected by RWV culture, indicating that signaling mechanisms downstream of PKC activation and calcium flux are not sensitive to simulated microgravity. Furthermore, sub-mitogenic doses of PMA alone but not ionomycin alone restored PHA responsiveness of PBMC in RWV culture. Thus, our data indicate that during polyclonal activation in simulated microgravity, there is a specific dysfunction within the T cell involving the signaling pathways upstream of PKC activation. ^