576 resultados para Biology, Molecular|Biology, Animal Physiology|Health Sciences, Oncology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is a devastating disease with very poor prognosis. The design of better treatments for patients would be greatly aided by mouse models that closely resemble the human disease. The most common type of human lung cancer is adenocarcinoma with frequent metastasis. Unfortunately, current models for this tumor are inadequate due to the absence of metastasis. Based on the molecular findings in human lung cancer and metastatic potential of osteosarcomas in mutant p53 mouse models, I hypothesized that mice with both K-ras and p53 missense mutations might develop metastatic lung adenocarcinomas. Therefore, I incorporated both K-rasLA1 and p53RI72HΔg alleles into mouse lung cells to establish a more faithful model for human lung adenocarcinoma and for translational and mechanistic studies. Mice with both mutations ( K-rasLA1/+ p53R172HΔg/+) developed advanced lung adenocarcinomas with similar histopathology to human tumors. These lung adenocarcinomas were highly aggressive and metastasized to multiple intrathoracic and extrathoracic sites in a pattern similar to that seen in lung cancer patients. This mouse model also showed gender differences in cancer related death and developed pleural mesotheliomas in 23.2% of them. In a preclinical study, the new drug Erlotinib (Tarceva) decreased the number and size of lung lesions in this model. These data demonstrate that this mouse model most closely mimics human metastatic lung adenocarcinoma and provides an invaluable system for translational studies. ^ To screen for important genes for metastasis, gene expression profiles of primary lung adenocarcinomas and metastases were analyzed. Microarray data showed that these two groups were segregated in gene expression and had 79 highly differentially expressed genes (more than 2.5 fold changes and p<0.001). Microarray data of Bub1b, Vimentin and CCAM1 were validated in tumors by quantitative real-time PCR (QPCR). Bub1b , a mitotic checkpoint gene, was overexpressed in metastases and this correlated with more chromosomal abnormalities in metastatic cells. Vimentin, a marker of epithelial-mesenchymal transition (EMT), was also highly expressed in metastases. Interestingly, Twist, a key EMT inducer, was also highly upregulated in metastases by QPCR, and this significantly correlated with the overexpression of Vimentin in the same tumors. These data suggest EMT occurs in lung adenocarcinomas and is a key mechanism for the development of metastasis in K-ras LA1/+ p53R172HΔg/+ mice. Thus, this mouse model provides a unique system to further probe the molecular basis of metastatic lung cancer.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Translation termination as a result of premature nonsense codon-incorporation in a RNA transcript can lead to the production of aberrant proteins with gain-of-function or dominant negative properties that could have deletrious effects on the cell. T-cell Receptor (TCR) genes acquire premature termination codons two-thirds of the time as a result of the error-prone programmed rearrangement events that normally occur during T-cell development. My studies have focused on the fate of TCR precursor mRNAs in response to in-frame nonsense mutations. ^ Previous published studies from our laboratory have shown that TCR precursor mRNAs are subject to nonsense mediated upregulation of pre-mRNA (NMUP). In this dissertation, I performed substitution and deletion analysis to characterize specific regions of TCR which are required to elicit NMUP. I performed frame- and factor-dependence studies to determine its relationship with other nonsense codon induced responses using several approaches including (i) translation dependence studies (ii) deletion and mutational analysis, as well as (iii) siRNA mediated knockdown of proteins involved. I also addressed the underlying molecular mechanism for this pre-mRNA upregulation by (i) RNA half-life studies using a c-fos inducible promoter, and (ii) a variety of assays to determine pre-mRNA splicing efficiency. ^ Using these approaches, I have identified a region of TCR that is both necessary and sufficient to elicit (NMUP). I have also found that neither cytoplasmic translation machinery nor the protein UPF1 are involved in eliciting this nuclear event. I have shown that the NMUP can be induced not only by nonsense and frameshift mutations, but also missense mutations that disrupt a cis splicing element in the exon that contains the mutation. However, the effect of nonsense mutations on pre-mRNA is unique and distinguishable from that of missense mutations in that nonsense mutations can upregulate pre-mRNA in a frame-dependent manner. Lastly, I provide evidence that NMUP occurs by a mechanism in which nonsense mutations inhibit the splicing of introns. In summary, I have found that TCR precursor mRNAs are subject to multiple forces involving both RNA splicing and translation that can either increase or decrease the levels of these precursor mRNAs. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease caused by germline mutations in DNA mismatch repair(MMR) genes. The nucleotide excision repair(NER) pathway plays a very important role in cancer development. We systematically studied interactions between NER and MMR genes to identify NER gene single nucleotide polymorphism (SNP) risk factors that modify the effect of MMR mutations on risk for cancer in HNPCC. We analyzed data from polymorphisms in 10 NER genes that had been genotyped in HNPCC patients that carry MSH2 and MLH1 gene mutations. The influence of the NER gene SNPs on time to onset of colorectal cancer (CRC) was assessed using survival analysis and a semiparametric proportional hazard model. We found the median age of onset for CRC among MMR mutation carriers with the ERCC1 mutation was 3.9 years earlier than patients with wildtype ERCC1(median 47.7 vs 51.6, log-rank test p=0.035). The influence of Rad23B A249V SNP on age of onset of HNPCC is age dependent (likelihood ratio test p=0.0056). Interestingly, using the likelihood ratio test, we also found evidence of genetic interactions between the MMR gene mutations and SNPs in ERCC1 gene(C8092A) and XPG/ERCC5 gene(D1104H) with p-values of 0.004 and 0.042, respectively. An assessment using tree structured survival analysis (TSSA) showed distinct gene interactions in MLH1 mutation carriers and MSH2 mutation carriers. ERCC1 SNP genotypes greatly modified the age onset of HNPCC in MSH2 mutation carriers, while no effect was detected in MLH1 mutation carriers. Given the NER genes in this study play different roles in NER pathway, they may have distinct influences on the development of HNPCC. The findings of this study are very important for elucidation of the molecular mechanism of colon cancer development and for understanding why some mutation carriers of the MSH2 and MLH1 gene develop CRC early and others never develop CRC. Overall, the findings also have important implications for the development of early detection strategies and prevention as well as understanding the mechanism of colorectal carcinogenesis in HNPCC. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This pilot study, conducted in the Houston, TX, area, established a structured dialogue among a university Institutional Review Board, its researchers, and its local community members (i.e. pool of potential research participants) for the purpose of further educating all three parties about genetic research and community concerns related to such research. An IRB-designed educational presentation aimed at assisting potential subjects in making an informed decision to participate in genetic research was provided to four community groups (n=54); this presentation also included a current example of genetic research being conducted in the community as explained by the researcher, and a question-and-answer session designed to assist the IRB and the researcher in understanding the community's concerns about genetic research. Comparisons of pre- and post- presentation community questionnaires indicate that the joint presentation was effective in increasing community knowledge about genetic research, most notably related to the risks and benefits of this research to the individual, as well as the understanding that protections are in place for research participants. While researchers are optimistic about the idea of a collaborative effort with the IRB and the community, the feasibility of such a program and the benefit to the participating researchers remain unclear; additional research is necessary to establish the most effective method of communication for all groups involved, as well as to obtain statistically significant results with regard to race/ethnicity, gender, and education levels of community participants. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several immune pathologies are the result of aberrant regulation of T lymphocytes. Pronounced T cell proliferation can result in autoimmunity or hematologic malignancy, whereas loss of T cell activity can manifest as immunodeficiency. Thus, there is a critical need to characterize the signal transduction pathways that mediate T cell activation so that novel and rational strategies to detect and effectively control T cell mediated disease can be achieved. ^ The first objective of this dissertation was to identify and characterize novel T cell regulatory proteins that are differentially expressed upon antigen induced activation. Using a functional proteomics approach, two members of the prohibitin (Phb) family of proteins, Phb1 and Phb2, were determined to be upregulated upon activation of primary human T cells. Furthermore, their regulated expression was dependent upon CD3 and CD28 signaling pathways which synergistically increased their expression. In contrast to previous reports of Phb nuclear localization, both proteins were determined to localize to the mitochondrial inner membrane of human T cells. Additionally, novel Phb phosphorylation sites were identified and characterized using mass spectrometry, phosphospecific antibodies and site directed mutagenesis. ^ Prohibitins have been proposed to play important roles in cancer development however the mechanism of action has not been elucidated. The second objective of this dissertation was to define the functional role of Phbs in T cell activity, survival and disease. Compared to levels in normal human T cells, Phb expression was higher in the human tumor T cell line Kit225 and subcellularly localized to the mitochondrion. Ablation of Phb expression by siRNA treatment of Kit225 cells resulted in disruption of mitochondrial membrane potential and significantly enhanced their sensitivity to cell death, suggesting they serve a protective function in T cells. Furthermore, Q-RT-PCR analysis of human oncology cDNA expression libraries indicated the Phbs may represent hematological cancer biomarkers. Indeed, Phb1 and Phb2 protein levels were 6-10 fold higher in peripheral blood mononuclear cells isolated from malignant lymphoma and multiple myeloma patients compared to healthy individuals. ^ Taken together, Phb1 and Phb2 are novel phosphoproteins upregulated during T cell activation and transformation to function in the maintenance of mitochondrial integrity and perhaps energy metabolism, thus representing previously unrecognized intracellular biomarkers and therapeutic targets for regulating T cell activation and hematologic malignancies. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rocky Mountain spotted fever (RMSF) is a tick-borne illness caused by the bacteria Rickettsia rickettsii, with infections occurring in humans and dogs. The prominent tick vector of RMSF, Dermacantor variabilis, and another potential vector, Rhipacephalus sanguineus, are prevalent in Texas. The goal of this study was to determine the prevalence of past infections by testing for IgG antibodies to R. rickettsii in dogs in an animal shelter in Harris County using an immunofluorescence assay (IFA) test. We found that 12.6% (24) of 191 dogs tested had a positive IFA test at 1:64 serum dilution, indicating infection at some time in the past. We also sampled the ticks present on dogs in the animal shelter to understand the prevalence of potential vector species. Of a total of 58 ticks, 86% were D. variabilis and the remaining 14% were R. sanguineus. The results of this study demonstrate that RMSF has the potential to be, and may already be, endemic to the Harris County area. Public health actions such as heightened surveillance and education that RMSF is present would be appropriate in the Harris County area.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Opioids dominate the field of pain management because of their ability to provide analgesia in many medical circumstances. However, side effects including respiratory depression, constipation, tolerance, physical dependence, and the risk of addiction limit their clinical utility. Fear of these side effects results in the under-treatment of acute pain. For many years, research has focused on ways to improve the therapeutic index (the ratio of desirable analgesic effects to undesirable side effects) of opioids. One strategy, combining opioid agonists that bind to different opioid receptor types, may prove successful.^ We discovered that subcutaneous co-administration of a moderately analgesic dose of the mu-opioid receptor (MOR) selective agonist fentanyl (20μg/kg) with subanalgesic doses of the less MOR-specific agonist morphine (100ng/kg-100μg/kg), augmented acute fentanyl analgesia in rats. Parallel [35S]GTPγS binding studies using naïve rat substantia gelatinosa membrane treated with fentanyl (4μM) and morphine (1nM-1pM) demonstrated a 2-fold increase in total G-protein activation. This correlation between morphine-induced augmentation of fentanyl analgesia and G-protein activation led to our proposal that interactions between MORs and DORs underlie opioid-induced augmentation. We discovered that morphine-induced augmentation of fentanyl analgesia and G-protein activity was mediated by DORs. Adding the DOR-selective antagonist naltrindole (200ng/kg, 40nM) at doses that did not alter the analgesic or G-protein activation of fentanyl, blocked increases in analgesia and G-protein activation induced by fentanyl/morphine combinations. Equivalent doses of the MOR-selective antagonist cyprodime (20ng/kg, 4nM) did not block augmentation. Substitution of the DOR-selective agonist SNC80 for morphine yielded similar results, further supporting our conclusion that interactions between MORs and DORs are responsible for morphine-induced augmentation of fentanyl analgesia and G-protein activation. Confocal microscopy of rat substantia gelatinosa showed that changes in the rate of opioid receptor internalization did not account for these effects.^ In conclusion, fentanyl analgesia augmentation by subanalgesic morphine is mediated by increased G-protein activation resulting from functional interactions between MORs and DORs, not changes in MOR internalization. Additional animal and clinical studies are needed to determine whether side effect incidence changes following opioid co-administration. If side effect incidence decreases or remains unchanged, these findings could have important implications for clinical pain treatment. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Global climate change is becoming an increasing concern among the public health community. Some researchers believe the earth is rapidly undergoing changes in temperature, sea level, population movement, and extreme weather phenomenon. With these geographic, meteorological, and social changes come increased threats to human health. One of these threats is the spread of vector-borne infectious diseases. The changes mentioned above are believed to contribute to increased arthropod survival, transmission, and habitation. These changes, in turn, lead to increased incidence among neighboring human populations. It is also argued that human action may play more of a role than climate change. This systematic review served to determine whether or not climate change poses a significant risk to human exposure and increased incidence of vector-borne disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the most critical aspects of G Protein Coupled Receptors (GPCRs) regulation is their rapid and acute desensitization following agonist stimulation. Phosphorylation of these receptors by GPCR kinases (GRK) is a major mechanism of desensitization. Considerable evidence from studies of rhodopsin kinase and GRK2 suggests there is an allosteric docking site for the receptor distinct from the GRK catalytic site. While the agonist-activated GPCR appears crucial for GRK activation, the molecular details of this interaction remain unclear. Recent studies suggested an important role for the N- and C-termini and domains in the small lobe of the kinase domain in allosteric activation; however, neither the mechanism of action of that site nor the RH domain contributions have been elucidated. To search for the allosteric site, we first indentified evolutionarily conserved sites within the RH and kinase domains presumably deterministic of protein function employing evolutionary trace (ET) methodology and crystal structures of GRK6. Focusing on a conserved cluster centered on helices 3, 9, and 10 in the RH domain, key residues of GRK5 and 6 were targeted for mutagenesis and functional assays. We found that a number of double mutations within helices 3, 9, and 10 and the N-terminus markedly reduced (50–90%) the constitutive phosphorylation of the β-2 Adrenergic Receptor (β2AR) in intact cells and phosphorylation of light-activated rhodopsin (Rho*) in vitro as compared to wild type (WT) GRK5 or 6. Based on these results, we designed peptide mimetics of GRK5 helix 9 both computationally and through chemical modifications with the goal of both confirming the importance of helix 9 and developing a useful inhibitor to disrupt the GPCR-GRK interaction. Several peptides were found to block Rho* phosphorylation by GRK5 including the native helix 9 sequence, Peptide Builder designed-peptide preserving only the key ET residues, and chemically locked helices. Most peptidomimetics showed inhibition of GRK5 activity greater than 80 % with an IC50 of ∼ 30 µM. Alanine scanning of helix 9 has further revealed both essential and non-essential residues for inhibition. Importantly, substitution of Arg 169 by an alanine in the native helix 9-based peptide gave an almost complete inhibition at 30 µM with an IC50 of ∼ 10 µM. In summary we report a previously unrecognized crucial role for the RH domain of GRK5 and 6, and the subsequent identification of a lead peptide inhibitor of protein-protein interaction with potential for specific blockade of GPCR desensitization. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bladder cancer is the fourth most common cancer in men in the United States. There is compelling evidence supporting that genetic variations contribute to the risk and outcomes of bladder cancer. The PI3K-AKT-mTOR pathway is a major cellular pathway involved in proliferation, invasion, inflammation, tumorigenesis, and drug response. Somatic aberrations of PI3K-AKT-mTOR pathway are frequent events in several cancers including bladder cancer; however, no studies have investigated the role of germline genetic variations in this pathway in bladder cancer. In this project, we used a large case control study to evaluate the associations of a comprehensive catalogue of SNPs in this pathway with bladder cancer risk and outcomes. Three SNPs in RAPTOR were significantly associated with susceptibility: rs11653499 (OR: 1.79, 95%CI: 1.24–2.60), rs7211818 (OR: 2.13, 95%CI: 1.35–3.36), and rs7212142 (OR: 1.57, 95%CI: 1.19–2.07). Two haplotypes constructed from these 3 SNPs were also associated with bladder cancer risk. In combined analysis, a significant trend was observed for increased risk with an increase in the number of unfavorable genotypes (P for trend<0.001). Classification and regression tree analysis identified potential gene-environment interactions between RPS6KA5 rs11653499 and smoking. In superficial bladder cancer, we found that PTEN rs1234219 and rs11202600, TSC1 rs7040593, RAPTOR rs901065, and PIK3R1 rs251404 were significantly associated with recurrence in patients receiving BCG. In muscle invasive and metastatic bladder cancer, AKT2 rs3730050, PIK3R1 rs10515074, and RAPTOR rs9906827 were associated with survival. Survival tree analysis revealed potential gene-gene interactions: patients carrying the unfavorable genotypes of PTEN rs1234219 and TSC1 rs704059 exhibited a 5.24-fold (95% CI: 2.44–11.24) increased risk of recurrence. In combined analysis, with the increasing number of unfavorable genotypes, there was a significant trend of higher risk of recurrence and death (P for trend<0.001) in Cox proportional hazard regression analysis, and shorter event (recurrence and death) free survival in Kaplan-Meier estimates (P log rank<0.001). This study strongly suggests that genetic variations in PI3K-AKT-mTOR pathway play an important role in bladder cancer development. The identified SNPs, if validated in further studies, may become valuable biomarkers in assessing an individual's cancer risk, predicting prognosis and treatment response, and facilitating physicians to make individualized treatment decisions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neural tube defects including spina bifida meningomyelocele (SBMM) are common malformations of the brain and spinal cord, and include all abnormalities resulting from lack of closure of the developing neural tube during embryological development.^ The specific aims of this study were to determine if single nucleotide polymorphic variants (SNPs) in the folate/homocysteine metabolic pathway genes confer a risk for NTD susceptibility within this SBMM population.^ In completion of the first specific aim, two novel SNPs were identified in the FOLR1 gene in Chromosome 11of patients including one in non-coding exon 1 with a C → T transition at nucleotide position 71578317 and another in non-coding exon 3 with a T → G transversion at nucleotide position 71579123. It will be important to determine if these variants are present in the respective parents of these individuals. If they are in fact de novo variants, then these SNPs may be more likely to contribute to the birth defect.^ The second project aim was to analyze genotypes associated with SBMM risk by transmission disequilibrium tests (TDT) and association was detected on several SNPs across the folate metabolic pathway genes in this population. SNPs with significant RC-TDT values were found within the DHFR gene (rs1650723), the MTRR gene (rs327592), the FOLR2 gene (rs13908), four tightly linked variants in the FOLR3 gene (rs7925545, rs7926875, rs7926987, rs7926360) and a variant in the SLC19A1 gene (rs1888530). The product of each of these genes performs a vital function in the folate metabolic pathway. It is conceivable, therefore, that if the individual SNP or SNPs can be proven to perturb the function in some way that they may be involved in the disruption of folate metabolism and in the resulting birth defect. Validating the results of this study in other independent populations will further strengthen the evidence that dysfunction of folate enzymes and receptors may confer SBMM risk in humans. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The E2F1 transcription factor is a well-known regulator of cell proliferation and apoptosis, but its role in the DNA damage response is less clear. It has been shown that E2F1 becomes stabilized in response to DNA double strand breaks (DSBs) and accumulates at sites of DSBs. This process requires ATM kinase and serine 31 phosphorylation, which provides a binding site for TopBp1. However, the role of E2F1 at sites of DNA damage is not clear. We expanded the study of E2F1's role in the DNA damage response by exploring its functions in ultraviolet (UV) induced DNA damage, and identified that E2F1 promotes DNA repair and cell survival. To further investigate the mechanisms underlying our findings, we examined the possibility for direct involvement of E2F1 in DNA repair. We found that E2F1 localizes to sites of UV irradiation-induced DNA damage dependent on the ATR kinase and serine 31 of E2F1. E2F1 also associates with the GCN5 histone acetyltransferase in response to UV irradiation and recruits GCN5 to sites of DNA damage. This correlates with an increase in histone H3 lysine 9 (H3K9) acetylation and chromatin relaxation. In the absence of E2F1 or GCN5, nucleotide excision repair (NER) proteins do not efficiently localize to sites of UV damage and DNA repair is impaired. E2F1 mutants unable to bind DNA or activate transcription retain the ability to stimulate NER. These findings demonstrate a non-transcriptional role for E2F1 in DNA repair involving GCN5-mediated H3K9 acetylation and increased accessibility to the NER machinery. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coalescent theory represents the most significant progress in theoretical population genetics in the past three decades. The coalescent theory states that all genes or alleles in a given population are ultimately inherited from a single ancestor shared by all members of the population, known as the most recent common ancestor. It is now widely recognized as a cornerstone for rigorous statistical analyses of molecular data from population [1]. The scientists have developed a large number of coalescent models and methods[2,3,4,5,6], which are not only applied in coalescent analysis and process, but also in today’s population genetics and genome studies, even public health. The thesis aims at completing a statistical framework based on computers for coalescent analysis. This framework provides a large number of coalescent models and statistic methods to assist students and researchers in coalescent analysis, whose results are presented in various formats as texts, graphics and printed pages. In particular, it also supports to create new coalescent models and statistical methods. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Li-Fraumeni syndrome (LFS) is characterized by a variety of neoplasms occurring at a young age with an apparent autosomal dominant transmission. Individuals in pedigrees with LFS have high incidence of second malignancies. Recently LFS has been found to be associated with germline mutations of a tumor-suppressor gene, p53. Because LFS is rare and indeed not a clear-cut disease, it is not known whether all cases of LFS are attributable to p53 germline mutations and how p53 plays in cancer occurrence in such cancer syndrome families. In the present study, DNAs from constitutive cells of two-hundred and thirty-three family members from ten extended pedigrees were screened for p53 mutations. Six out of the ten LFS families had germline mutations at the p53 locus, including point and deletion mutations. In these six families, 55 out of 146 members were carriers of p53 mutations. Except one, all mutations occurred in exons 5 to 8 (i.e., the "hot spot" region) of the p53 gene. The age-specific penetrance of cancer was estimated after the genotype for each family member at risk was determined. The penetrance was 0.15, 0.29, 0.35, 0.77, and 0.91 by 20, 30, 40, 50 and 60 year-old, respectively, in male carriers; 0.19, 0.44, 0.76, and 0.90 by 20, 30, 40, and 50 year-old, respectively, in female carriers. These results indicated that one cannot escape from tumorigenesis if one inherits a p53 mutant allele; at least ninety percent of p53 carriers will develop cancer by the age of 60. To evaluate the possible bias due to the unexamined blood-relatives in LFS families, I performed a simulation analysis in which a p53 genotype was assigned to each unexamined person based on his cancer status and liability to cancer. The results showed that the penetrance estimates were not biased by the unexamined relatives. I also determined the sex, site, and age-specific penetrance of breast cancer in female carriers and lung cancer in male carriers. The penetrance of breast cancer in female carriers was 0.81 by age 45; the penetrance of lung cancer in male carriers was 0.78 by age 60, indicating that p53 play a key role for tumorigenesis in common cancers. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoids have been found to be effective in the prevention of premalignant lesions and second primary cancers in the upper aerodigestive tract. Further development of retinoids for prevention and therapy of head and neck squamous cell carcinoma (HNSCC) requires a better understanding of their mechanism of action on the growth and differentiation of such cells. I have chosen to employ cultured HNSCC cell lines as a model system for investigating the mechanism underlying the effects of retinoids. These cells are useful because all-trans retinoic acid (ATRA) inhibits their proliferation. Furthermore, two HNSCC cell lines were found to express three squamous differentiation (SqD) markers characteristic of normal keratinocytes and ATRA suppressed the expression of these markers as reported for normal keratinocytes. It is thought that nuclear retinoic acid receptors (RARs and RXRs), which act as DNA-binding transcription modulating factors, mediate the effects of retinoids on the growth and differentiation of normal and tumor cells. I found that all four cell lines examined expressed RAR-$\alpha ,$ RAR-$\tau ,$ and RXR-$\alpha$ and three of four expressed RAR-$\beta .$ ATRA treatment increased the level of RAR-$\alpha ,$ -$\beta ,$ and -$\tau$ in four cell lines. Two HNSCC cell lines that exhibited a progressive increase in the expression of SqD markers during growth in culture also showed a concurrent decrease in RAR-$\beta$ level. Moreover, increasing concentrations of RA suppressed the SqD marker while inducing RAR-$\beta$ mRNA. Several synthetic retinoids which exhibit a preference for binding to specific nuclear RARs showed a differential ability to inhibit cell proliferation, transactivate transcription of the reporter genes (CAT and luciferase) from the RA response element (RARE) of the RAR-$\beta$ gene, and induce RAR-$\beta$ expression. Those retinoids that were effective inducers of RAR-$\beta$ also suppressed SqD effectively, indicating an inverse relationship exists between the expression of RAR-$\beta$ and SqD. This inverse relationship suggests a role for RAR-$\beta$ in the suppression of SqD. ^