586 resultados para Biology, Molecular|Biology, Cell|Health Sciences, Pharmacology
Resumo:
Calcium ionophore, ionomycin, and phorbol myristate acetate (PMA) were used to activate rabbit peripheral blood B cells to study the role of increased intracellular calcium ion concentration ( (Ca$\sp2+\rbrack\sb{\rm i}$), protein kinase C (PKC) activation, and autocrine interleukin (IL-2) in inducing cell cycle entry and maintaining activation to DNA synthesis. When stimulated with a combination of ionomycin and PMA the B cells produced a soluble factor that supported the IL-2 dependent cell line, CTLL-2. The identity of the factor was established as IL-2 and its source was proved to be B cells in further experiments. Absorption studies and limiting dilution analysis indicated that IL-2 produced by B cells can act as an autocrine growth factor. Next, the effect of complete and incomplete signalling on B lymphocyte activation leading to cell cycle entry, IL-2 production, functional IL-2 receptor (IL-2R) expression, and DNA synthesis was examined. It was observed that cell cycle entry could be induced by signals provided by each reagent alone, but IL-2 production, IL-2R expression, and progression to DNA synthesis required activation with both reagents. Incomplete activation with ionomycin or PMA alone altered the responsiveness of B cells to further stimulation only in the case of ionomycin, and the unresponsiveness of these cells was apparently due to a lack of functional IL-2R expression on these cells, even though IL-2 production was maintained. The requirement of IL-2 for maintenance of activation to DNA synthesis was then investigated. The hypothesis that IL-2, acts in late G$\sb1$ and is required for DNA synthesis in B cells was supported by comparing IL-2 production and DNA synthesis in peripheral blood cells and purified B cells, kinetic analysis of these events in B cells, effects of anti-IL-2 antibody and PKC inhibitors, and by the response of G$\sb1$ B cells. Additional signals transduced by the interaction of autocrine IL-2 and functional IL-2 receptor on rabbit B cells were found to be necessary to drive these cells to S phase, after initial activation caused by simultaneous increase in (Ca$\sp2+\rbrack\sb{\rm i}$ and PKC activation had induced cell cycle entry, IL-2 production, and functional IL-2 receptor expression. ^
Resumo:
The objective of this study was to investigate the immunochemical nature of the polyclonal immune response to the 14mer peptide TINKEDDESPGLYG and to identify interactions among antibodies to more than one epitope. Two groups of rabbits were immunized with the 14mer peptide and a Keyhole Limpet hemocyanin (KLH) carrier, but with KLH attached either to the 14mer's N- or C-terminus. Two approximate epitopes were mapped by an antibody-capture enzyme-linked immunosorbent assay method using antiserum obtained when KLH was oriented on the C-terminus of the 14mer. A precise mapping of the epitopes performed with inhibition enzyme immunoassays (iEIAs) resulted in an N-terminal 6mer epitope TINKED and a C-terminal 10mer epitope EDDESPGLYG. The epitopes overlapped by two amino acids. IEIAs and iEIAs incorporating antibody-blocking peptides indicated that the two anti-epitope antibody fractions did not interfere with one anothers' epitope binding. It was postulated that the anti-TINKED and anti-EDDESPGLYG antibody fractions individually bind their respective hydrophobic epitope "core" region at the N- or C-terminal of peptide TINKEDDESPGLYG, while sharing the two hydrophilic overlap amino acids. This antibody "lap joint" binding interaction can be accomplished by each of the anti-epitope antibodies binding an opposite side of the epitope overlap region in the shallow periphery of its binding site. ^
Resumo:
The c-mos proto-oncogene, which is expressed at relatively high levels in male and female germ cells, plays a key role in oocyte meiotic maturation. The c-mos gene product in oocytes (p39$\sp{\rm c-mos}$) is necessary and sufficient to initiate meiosis. p39$\sp{\rm c-mos}$ is also an essential component of the cytostatic factor, which is responsible for arresting vertebrate oocytes at the second meiotic metaphase by stabilizing the maturation promoting factor (MPF). MPF is a universal regulator of both meiosis and mitosis. Much less is understood about c-mos expression and function in somatic cells. In addition to gonadal tissues, c-Mos has been detected in some somatic tissues and non-germ cell lines including NIH 3T3 cells as a protein termed p43$\sp{\rm c-mos}$. Since c-mos RNA transcripts were not previously detected in this cell line by Northern blot or S1 protection analyses, a search was made for c-mos RNA in NIH 3T3 cells. c-mos transcripts were detected using the highly sensitive RNA-PCR method and RNase protection assays. Furthermore, cell cycle analyses indicated that expression of c-mos RNA is tightly controlled in a cell cycle dependent manner with highest levels of transcripts (approximately 5 copies/cell) during the G2 phase.^ In order to determine the physiological significance of c-mos RNA expression in somatic cells, antisense mos was placed under the control of an inducible promoter and introduced into either NIH 3T3 cells or C2 cells. It was found that a basal level of expression of antisense mos resulted in interference with mitotic progression and growth arrest. Several nuclear abnormalities were observed, especially the appearance of binucleated and multinucleated cells as well as the extrusion of microvesicles containing cellular material. These results indicate that antisense mos expression results in a block in cytokinesis. In summary, these results establish that c-mos expression is not restricted to germ cells, but instead indicate that c-mos RNA expression occurs during the G2 stage of the cell cycle. Furthermore, these studies demonstrate that the c-mos proto-oncogene plays an important role in cell cycle progression. As in meiosis, c-mos may have a similar but not identical function in regulating cell cycle events in somatic cells, particularly in controlling mitotic progression via activation/stabilization of MPF. ^
Resumo:
Molecular and cytogenetic analyses of human glioblastomas have revealed frequent genetic alterations, including major deletions in chromosomes 9, 10, and 17, suggesting the presence of glioma-associated tumor suppressor genes on these chromosomes. To examine this hypothesis, copies of chromosomes 2, 4, and 10 derived from a human fibroblast cell line were independently introduced into a human glioma cell line, U251, by microcell-mediated chromosomal transfer. Successful transfer of chromosomes in each case was confirmed by resistance to the drug G418, indicating the presence of the neomycin-resistance gene previously integrated into each transferred chromosome. The presence of novel chromosomes and or chromosomal fragments was also demonstrated by molecular and karyotypic analyses. The hybrid clones containing either a novel chromosome 4 or chromosome 10 displayed suppression of the tumorigenic phenotype in vivo and suppression of the transformed phenotype in vitro, while cells containing a transferred chromosome 2 failed to alter their tumorigenic phenotype. The hybrid cells containing chromosome 4 or 10 exhibited a significant decrease in their saturation density, altered cellular morphology at high cell density, but only a slight decrease in their exponential growth rate. A dramatic decrease was observed in growth of cells with chromosome 4 or 10 in soft agarose, with the number and size of the colonies being greatly reduced, compared to the parental or chromosome 2 containing cells. The introduction of chromosome 4 or 10 also completely suppressed tumor formation in nude mice. These studies indicate that chromosome 10, as hypothesized, and chromosome 4, a novel finding for gliomas, harbor tumor suppressor loci that may be directly involved in the initiation or progression of normal glial precursors to human glioblastoma multiforme. ^
Resumo:
Tumor necrosis factor (TNF) is known to have antiproliferative effects on a wide variety of tumor cells but proliferative effects on normal cells. However, the molecular basis for such differences in the action of TNF are unknown. The overall objectives of my research are to investigate the role of oncogenes in TNF sensitivity and delineate some of the molecular mechanisms involved in TNF sensitivity and resistance. To accomplish these objectives, I transfected TNF-resistant C3H mouse embryo fibroblasts (10T1/2) with an activated Ha-ras oncogene and determined whether these cells exhibit altered sensitivity to TNF. The results indicated that 10T1/2 cells transfected with an activated Ha-ras oncogene (10T-EJ) not only produced tumors in nude mice but also exhibited extreme sensitivity to cytolysis by TNF. In contrast, 10T1/2 cells transfected with the pSV2-neo gene alone were resistant to the cytotoxic effects of TNF. I also found that TNF-induced cell death was mediated through apoptosis. The differential sensitivity of 10T1/2 and 10T-EJ cell lines to TNF was not due to differences in the number of TNF receptors on their cell surface. In addition, TNF-resistant revertants isolated from Ha-ras-transformed, TNF-sensitive cells still expressed the same amount of p21 as TNF-sensitive cells and were still tumorigenic, suggesting that Ha-ras-induced transformation and TNF sensitivity may follow different pathways. Interestingly, TNF-resistant but not sensitive cells expressed higher levels of bcl-2, c-myc, and manganese superoxide dismutase (MnSOD) mRNA following exposure to TNF. However, TNF treatment resulted in a marginal induction of p53 mRNA in both TNF-sensitive and resistant cells. Based on these results I can conclude that (i) Ha-ras oncogene induces both transformation and TNF sensitivity, (ii) TNF-induced cytotoxicity involves apoptosis, and (iii) TNF-induced upregulation of bcl-2, c-myc, and MnSOD genes is associated with TNF resistance in C3H mouse embryo fibroblasts. ^
Resumo:
The 14.5 kDa (galectin-1) and 31 kDa (galectin-3) lectins are the most well characterized members of a family of vertebrate carbohydrate-binding proteins known as the galectins. Evidence has been obtained implicating these galectins in events as diverse as cell-cell and cell-extracellular matrix interactions, growth regulation, transformation, differentiation, and programmed cell death. In the present study, sodium butyrate was found to be a potent inducer of galectin-1 in the KM12 human colon carcinoma cell line. Prior to treatment with butyrate this cell line expresses only galectin-3. These cells were utilized as an in vitro model system to study galectin expression as well as that of their endogenous ligands. The initial phase of this project involved the examination of the induction of galectin-1 by butyrate at the protein level. These studies indicated that galectin-1 induction by butyrate was relatively rapid reaching nearly maximal levels after only 24 hours. Additionally, the induction was found to be reversible upon the removal of butyrate and to precede the increase in expression of the well characterized differentiation marker, carcinoembryonic antigen (CEA). The second phase of this project involved the characterization of potential glycoprotein ligands for galectin-1 and galectin-3. This work demonstrated that the polylactosaminoglycan-containing glycoproteins laminin, CEA, and the lysosome-associated glycoproteins-1 and -2 (LAMPs-1 and -2) are capable of serving as ligands for both galectin-1 and -3. The third phase of this project involved the analysis of the induction of the galectin-1 promoter by butyrate. Through the analysis of deletion constructs transiently transfected into KM12 cells, the region of the galectin-1 promoter mediating a high level of induction by butyrate was localized primarily within a proximal portion of the promoter containing a CCAAT element and an Sp1 binding site. The CCAAT-binding activity in the KM12 nuclear extracts was subsequently dentified as NF-Y by gel shift analysis. These studies suggest that: (1) the galectins may be involved in modulating adhesive interactions in human colon carcinoma cells through the binding of several polylactosaminoglycans shown to play a role in adhesion and (2) high level induction of the galectin-1 promoter by butyrate can proceed through a discreet, proximal element containing an NF-Y-binding CCAAT box and an Sp1 site. ^
Resumo:
Trophism as a "clonal dominance" support mechanism for tumor cells is an unexplored area of tumor progression. This report presents evidence that the human melanoma low-affinity neurotrophin receptor (p75) can signal independently of its high-affinity tyrosine kinase counterparts, the TRK family of kinases. Signaling may be accomplished by a p75-associated purine-analog-sensitive kinase and results in enhanced invasion into a reconstituted basement membrane with a corresponding stimulation of matrix metalloproteinase-2 expression. Additionally, a "stress culture" survival assay was developed to mimic the growth limiting conditions encountered by melanoma cells in a rapidly growing primary tumor or metastatic deposit prior to neoangiogenesis. Under these conditions, p75, promotes the survival of high p75 expressing brain-colonizing melanoma cells. Extensive 70W melanoma cell-cell contact, which downregulates p75, immediately precedes the induction of cell death associated with diminished production of two key cell survival factors, bcl-2 and the p85 subunit of phosphoinositol-3-kinase, and an elevation in apoptosis promoting intracellular reactive oxygen species (ROSs). Since one function of bcl-2 may be to control the generation of ROSs via the antioxidant pathway, these cells may receive a apoptosis-prompting "double hit". 70W melanoma cell death occurred by an apoptotic mechanism displaying classical morphological changes including plasma membrane blebbing, loss of microvilli and redistribution of ribosomes. 70W apoptosis could be pharmacologically triggered following anti-p75 monoclonal antibody-mediated clustering of p75 receptors. 70W cells fluorescently sorted for high-p75 expression (p75$\sp{\rm H}$ cells) exhibited an augmented survival potential and a predilection to sort with the S + G2/M growth phase, relative to their low p75 expressing, p75$\sp{\rm L}$ counterparts. Apoptosis is significantly delayed by p75$\sp{\rm H}$ cells, whereas p75$\sp{\rm L}$ cells are exquisitely prone to initiate apoptosis. Importantly, the p75$\sp{\rm L}$ cells that survive apoptosis, highly re-expressed p75 and were remarkably responsive to exogenous NGF.^ These are the first data to implicate p75-mediated neurotrophism as an invasion and survival support mechanism employed by brain-metastatic cells. In particular, these results may have implications in little understood phenomena of tumor progression, such as the emergence of "clonal dominance" and tumor dormancy. ^
Resumo:
Class I major histocompatibility complex (MHC) molecules induce either accelerated rejection or prolonged survival of allografts, presumably because of the presence of immunogenic or tolerogenic epitopes, respectively. To explore the molecular basis of this phenomenon, three chimeric class I molecules were constructed by substituting the rat class I RT1.A$\sp{\rm a}$ sequences with the N-terminus of HLA-A2.1 (N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$), the $\alpha\sb1$ helix (h) with $\rm\alpha\sb{1h}\sp{u}$ sequences ( ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$) or the entire $\alpha\sb2$ domain (d) with $\rm\alpha\sb{2d}\sp{u}$ sequences ( ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$). Wild type (WT) and chimeric cDNAs were sequenced prior to transfection into Buffalo (BUF; RT1$\sp{\rm b}$) hepatoma cells. Stable transfectants were injected subcutaneously (s.c.) into different hosts 7 days prior to challenge with a heart allograft. In BUF hosts, chimeric ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ accelerated the rejection of Wistar Furth (WF; RT1$\sp{\rm u}$) heart allografts, but had no effect on the survival of ACI (RT1$\sp{\rm a}$) grafts. In contrast, the ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ (containing $\rm\alpha\sb{1d}\sp{a}$ sequences) immunized BUF recipients toward RT1$\sp{\rm a}$ grafts. In WF hosts, WT-RT1.A$\sp{\rm a}$ was a potent immunogen and accelerated ACI graft rejection, N$\sp{\rm HLA-A2.1}$-RT1.A$\sp{\rm a}$ was less effective and ($\rm\alpha\sb{\rm 1h}\sp{u}\rbrack$-RT1.A$\sp{\rm a}$ was not immunogenic. Thus, dominant and subdominant epitopes inducing in vivo sensitization to cardiac allografts are present in the $\alpha\sb1$ helix and the N-terminus, respectively. The failure of ($\rm\alpha\sb{2d}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants (containing recipient-type $\alpha\sb{\rm 2d}$ sequences) to sensitize WF hosts toward ACI (RT1$\sp{\rm a}$) grafts, despite the presence of donor-type immunogenic $\alpha\sb{\rm 1d}\sp{\rm a}$, suggests that "self-$\alpha\sb2$" sequences displayed on chimeric antigens interfere with immunogenicity. The ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$ transfectants injected s.c. prolonged the survival of WF (RT1$\sp{\rm u}$) hearts in ACI (RT1$\sp{\rm a}$) recipients. Furthermore, intra-portal injection of extracts from ($\rm\alpha\sb{1h}\sp{u}$) -RT1.A$\sp{\rm a}$, but not WT-RT1.A$\sp{\rm a}$ or RT1.A$\sp{\rm u}$, in conjunction with a brief cyclosporine course rendered ACI hosts permanently and specifically tolerant to donor-type WF cardiac allografts. Thus, immunodominant allodeterminants are present in the $\alpha\sb1$, but not the $\alpha\sb2$, domain of rat class I MHC molecules. Furthermore, the $\rm\alpha\sb{1h}\sp{u}$ immunogenic epitopes trigger tolerogenic responses when flanked by host-type N-terminal$\sp{\rm a}$ and $\rm\alpha\sb{2d}\sp{a}$ sequences. ^
Resumo:
Heparan sulfate proteoglycans and their corresponding binding sites have been suggested to play an important role during the initial attachment of blastocysts to uterine epithelium and human trophoblastic cell lines to uterine epithelial cell lines. Previous studies on RL95 cells, a human uterine epithelial cell line, characterized a single class of cell surface heparin/heparan sulfate (HP/HS)-binding sites. Three major HP/HS-binding peptide fragments were isolated from RL95 cell surfaces by tryptic digestion and partial amino-terminal amino acid sequence from each peptide fragment was obtained. In the current study, using the approaches of reverse transcription-polymerase chain reaction and cDNA library screening, a novel cell surface $\rm\underline{H}$P/HS $\rm\underline{i}$nteracting $\rm\underline{p}$rotein (HIP) has been isolated from RL95 cells. The full-length cDNA of HIP encodes a protein of 259 amino acids with a calculated molecular weight of 17,754 Da and pI of 11.75. Transfection of HIP cDNA into NIH-3T3 cells demonstrated cell surface expression and a size similar to that of HIP expressed by human cells. Predicted amino acid sequence indicates that HIP lacks a membrane spanning region and has no consensus sites for glycosylation. Northern blot analysis detected a single transcript of 1.3 kb in both total RNA and poly(A$\sp+$) RNA. Examination of human cell lines and normal tissues using both Northern blot and Western blot analysis revealed that HIP is differentially expressed in a variety of human cell lines and normal tissues, but absent in some cell lines examined. HIP has about 80% homology, at the level of both mRNA and protein, to a rodent protein, designated as ribosomal protein L29. Thus, members of the L29 family may be displayed on cell surfaces where they participate in HP/HS binding events. Studies on a synthetic peptide derived from HIP demonstrate that HIP peptide binds HS/HP with high selectivity and has high affinity (Kd = 10 nM) for a subset of polysaccharides found in commercial HIP preparations. Moreover, HIP peptide also binds certain forms of cell surface, but not secreted or intracellular. HS expressed by RL95 and JAR cells. This peptide supports the attachment of several human trophoblastic cell lines and a variety of mammalian adherent cell lines in a HS-dependent fashion. Furthermore, studies on the subset of HP specifically recognized by HIP peptide indicate that this high-affinity HP (HA-HP) has a larger median MW and a greater negative charge density than bulk HP. The minimum size of oligosaccharide required to bind to HIP peptide with high affinity is a septa- or octasaccharide. HA-HP also quantitatively binds to antithrombin-III (AT-III) with high affinity, indicating that HIP peptide and AT-III may recognize the same or similar oligosaccharide structure(s). Furthermore, HIP peptide antagonizes HP action and promotes blood coagulation in both factor Xa- and thrombin-dependent assays. Finally, HA-HP recognized by HP peptide is highly enriched with anticoagulant activity relative to bulk HP. Collectively, these results demonstrate that HIP may play a role in the HP/HS-involved cell-cell and cell-matrix interactions and recognizes a motif in HP similar or identical to that recognized by AT-III and therefore, may modulate blood coagulation. ^
Resumo:
Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^
Resumo:
To initiate our clinical trial for chemotherapy protection, I established the retroviral vector system for human MDR1 cDNA gene transfer. The human MDR1 cDNA continued to be expressed in the transduced bone marrow cells after four cohorts of serial transplants, 17 months after the initial transduction and transplant. In addition, we used this retroviral vector pVMDR1 to transduce human bone marrow and peripheral blood CD34$\sp+$ cells on stromal monolayer in the presence of hematopoietic growth factors. These data suggest that the retroviral vector pVMDR1 could modify hematopoietic precursor cells with a capacity for long-term self renewal. Thus, it may be possible to use the MDR1 retroviruses to confer chemotherapeutic protection on human normal hematopoietic precursor cells of ovarian and breast cancer patients in whom high doses of MDR drugs may be required to control the diseases.^ Another promising vector system is recombinant adeno-associated virus (rAAV) vector. An impediment to use rAAV vectors is that production of rAAV vectors for clinical use is extremely cumbersome and labor intensive. First I set up the rAAV vector system in our laboratory and then, I focused on studies related to the production of rAAV vectors for clinical use. By using a self-inactivating retroviral vector carrying a selection marker under the control of the CMV immediate early promoter and an AAV genome with the deletion of both ITRs, I have developed either a transient or a stable method to produce rAAV vectors. These methods involve infection only and can generate high-titer rAAV vectors (up to 2 x 10$\sp5$ cfu/ml of CVL) with much less work.^ Although recombinant adenoviral vectors hardly infect early hematopoietic precursor cells lacking $\alpha\sb v\beta\sb5$ or $\alpha\sb v\beta\sb3$ integrin on their surface, but efficiently infect other cells, we can use these properties of adenoviral vectors for bone marrow purging as well as for development of new viral vectors such as pseudotyped retroviral vectors and rAAV vectors. Replacement of self-inactivating retroviral vectors by recombinant adenoviral vectors will facilitate the above strategies for production of new viral vectors. In order to accomplish these goals, I developed a new method which is much more efficient than the current methods to construct adenoviral vectors. This method involves a cosmid vector system which is utilized to construct the full-length recombinant adenoviral vectors in vitro.^ First, I developed an efficient and flexible method for in vitro construction of the full-length recombinant adenoviral vectors in the cosmid vector system by use of a three-DNA fragment ligation. Then, this system was improved by use of a two-DNA fragment ligation. The cloning capacity of recombinant adenoviral vectors constructed by this method to develop recombinant adenoviral vectors depends on the efficiency of transfection only. No homologous recombination is required for development of infectious adenoviral vectors. Thus, the efficiency of generating the recombinant adenoviral vectors by the cosmid method reported here was much higher than that by the in vitro direct ligation method or the in vivo homologous recombination method reported before. This method of the in vitro construction of recombinant adenoviral vectors in the cosmid vector system may facilitate the development of adenoviral vector for human gene therapy. (Abstract shortened by UMI.) ^
Resumo:
Objective. Essential hypertension affects 25% of the US adult population and is a leading contributor to morbidity and mortality. Because BP is a multifactorial phenotype that resists simple genetic analysis, intermediate phenotypes within the complex network of BP regulatory systems may be more accessible to genetic dissection. The Renin-Angiotensin System (RAS) is known to influence intermediate and long-term blood pressure regulation through alterations in vascular tone and renal sodium and fluid resorption. This dissertation examines associations between renin (REN), angiotensinogen (AGT), angiotensin-converting enzyme (ACE) and angiotensin II type 1 receptor (AT1) gene variation and interindividual differences in plasma hormone levels, renal hemodynamics, and BP homeostasis.^ Methods. A total of 150 unrelated men and 150 unrelated women, between 20.0 and 49.9 years of age and free of acute or chronic illness except for a history of hypertension (11 men and 7 women, all off medications), were studied after one week on a controlled sodium diet. RAS plasma hormone levels, renal hemodynamics and BP were determined prior to and during angiotensin II (Ang II) infusion. Individuals were genotyped by PCR for a variable number tandem repeat (VNTR) polymorphism in REN, and for the following restriction fragment length polymorphisms (RFLP): AGT M235T, ACE I/D, and AT1 A1166C. Associations between clinical measurements and allelic variation were examined using multiple linear regression statistical models.^ Results. Women homozygous for the AT1 1166C allele demonstrated higher intracellular levels of sodium (p = 0.044). Men homozygous for the AGT T235 allele demonstrated a blunted decrement in renal plasma flow in response to Ang II infusion (p = 0.0002). There were no significant associations between RAS gene variation and interindividual variation in RAS plasma hormone levels or BP.^ Conclusions. Rather than identifying new BP controlling genes or alleles, the study paradigm employed in this thesis (i.e., measured genes, controlled environments and interventions) may provide mechanistic insight into how candidate genes affect BP homeostasis. ^
Resumo:
One full length cDNA clone, designated 3aH15, was isolated from a rat brain cDNA library using a fragment of CYP3A2 cDNA as a probe. 3aH15 encoded a protein composed of 503 amino acid residues. The deduced amino acid sequence of 3aH15 was 92% identical to mouse Cyp3a-13 and had a 68.4% to 76.5% homology with the other reported rat CYP3A sequences. Clone 3aH15 was thus named CYP3A9 by Cytochrome P450 Nomenclature Committee. CYP3A9 seems to the major CYP3A isozyme expressed in rat brain. Sexual dimorphism of the expression of CYP3A9 was shown for the first time in rat brain as well as in rat liver. CYP3A9 appears to be female specific in rat liver based on the standards proposed by Kato and Yamazoe who defined sex specific expression of P450s as being a 10-fold or higher expression level in one sex compared with the other. CYP3A9 gene expression was inducible by estrogen treatment both in male and in female rats. Male rats treated with estrogen had a similar expression level of CYP3A9 mRNA both in the liver and brain. Ovariectomy of adult female rats drastically reduced the mRNA level of CYP3A9 which could be fully restored by estrogen replacement. On the other hand, only a two-fold induction of CYP3A9 expression by dexamethasone was observed in male liver and no significant induction of CYP3A9 mRNA was observed in female liver or in the brains. These results suggest that estrogen may play an important role in the female specific expression of the CYP3A9 gene and that CYP3A9 gene expression is regulated differently from other CYP3A isozymes. ^ P450 3A9 recombinant protein was expressed in E. coli using the pCWOri+ expression vector and the MALLLAVF amino terminal sequence modification. This construct gave a high level of expression (130 nmol P450 3A9/liter culture) and the recombinant protein of the modified P450 3A9 was purified to electrophoretic homogeneity (10.1 nmol P450/mg protein) from solubilized fractions using two chromatographic steps. The purified P450 3A9 protein was active towards the metabolism of many clinically important drugs such as imipramine, erythromycin, benzphetamine, ethylmorphine, chlorzoxazone, cyclosporine, rapamycin, etc. in a reconstituted system containing lipid and rat NADPH-P450 reductase. Although P450 3A9 was active towards the catabolism of testosterone, androstenedione, dehydroepiandrosterone (DHEA) and 17β-estradiol, P450 3A9 preferentially catalyzes the metabolism of progesterone to form four different hydroxylated products. Optimal reconstitution conditions for P450 3A9 activities required a lipid mixture and GSH. The possible mechanisms of the stimulatory effects of GSH on P450 3A9 activities are discussed. Sexually dimorphic expression of P450 3A9 in the brain and its involvement in many neuroactive drugs as well as neurosteroids suggest the possible role of P450 3A9 in some mental disorders and brain functions. ^
Resumo:
Osteopontin (OPN) is a highly-phosphorylated extracellular matrix protein localized in bone, kidney, placenta, T-lymphocytes, macrophages, smooth muscle of the vascular system, milk, urine, and plasma. In ROS 17/2.8 osteoblast-like osteosarcoma cells, 1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] regulates OPN at the transcriptional level resulting in increased steady state mRNA levels and increased production of OPN protein, maximal at 48 hours. Using ROS 17/2.8 cells as an osteoblast model, OPN was purified from culture medium after three hour treatments of either vehicle (ethanol) or 1,25(OH)2D3 via barium citrate precipitation followed by immunoaffinity chromatography. ^ Here, further evidence of regulation of OPN by 1,25(OH)2D 3 at the posttranslational level is presented. Prior to the up-regulation of OPN at the transcriptional level, 1,25(OH)2D3 induces a shift in OPN isoelectric point (pI) detected on two-dimensional gels from pI 4.6 to pI 5.1. Loading equal amounts of [32P]-labeled OPN recovered from ROS 17/2.8 cells exposed to 1,25(OH)2D3 or vehicle alone for three hours reveals that the shift from pI 4.6 to 5.1 is the result of reduced phosphorylation. Using structural analogs to 1,25(OH) 2D3, analog AT [25-(OH)-16-ene-23-yne-D3], which triggers Ca2+ influx through voltage sensitive Ca2+ channels but does not bind to the vitamin D receptor, mimicked the OPN pI shift while analog BT [1,25(OH)2-22-ene-24-cyclopropyl-D 3], which binds to the vitamin D receptor but does not allow Ca 2+ influx, did not. Inclusion of the Ca2+ channel blocker nifedipine also blocks the charge shift conversion of OPN. Further analysis of the signaling pathway initiated by 1,25(OH)2D3 reveals that inhibition of the cyclic 3′,5′ -adenosine monophosphate-dependent kinase, protein kinase A, or inhibition of the cyclic 3′,5′-guanine monophosphate-dependent kinase, protein kinase G, also prevents the charge shift conversion. ^ Isolation of OPN from rat femurs and tibiae provides evidence for the existence of these two OPN charge forms in vivo, evidenced by differential migration on isoelectric focusing gels and sodium dodecyl sulfate-polyacrylamide gels. Peptide sequencing of rat long bone fractions revealed the presence of a presumed dentin specific protein, dentin matrix protein-1 (DMP-1). Western blot analysis confirmed the existence of DMP-1 in these fractions. ^ Using the OPN charge forms in functional assays, it was determined that the charge forms have differential roles in both cell surface and mineralization functions. In cell attachment assays and Ca2+ influx assays using PC-3 prostate cancer cells, the pI 5.1 charge form of OPN was found to permit binding and increase intracellular Ca2+ concentrations of PC-3 cells. The increase in intracellular Ca2+ concentration was found to be integrin αvβ3-dependent. In mineralization assays, the pI 4.6 charge form of OPN promoted hydroxyapatite formation, while the pI 5.1 charge form had improved Ca2+ binding ability. ^ In conclusion, these findings suggest that 1,25(OH) 2D3 regulates OPN not only at the transcriptional level, but also plays a role in determination of the OPN phosphorylation state. The latter involves a short term (less than three hours) treatment and is associated with membrane-initiated Ca2+ influx. Functional assays utilizing the two OPN charge forms reveal the dependence of OPN post-translational state on its function. ^
Resumo:
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by the accumulation of terminally differentiated, mature B cells that do not progress beyond the G1 stage of cell cycle, suggesting that these cells possess intrinsic defects in apoptosis. Treatment relies heavily on chemotherapy (primarily nucleoside analogs and glucocorticoids) that may initially be effective in patients, but ultimately give rise to refractory, untreatable disease. The purpose of this study was to determine whether key components of the apoptotic machinery were intact in CLL lymphocytes, especially in patients refractory to therapy. ^ Activation of proteases has been shown to be at the core of the apoptotic pathway and this work demonstrates that protease activation is required for glucocorticoid and nucleoside analog-induced apoptosis in CLL cells. Inhibitors of serine proteases as well as caspase inhibitors blocked induced DNA fragmentation, and a peptide inhibitor of the nuclear scaffold (NS) protease completely suppressed both induced and spontaneous apoptosis. However, the NS protease inhibitor actually promoted several pro-apoptotic events, such as caspase activation, exposure of surface phosphatidylserine, and loss of mitochondrial membrane potential. These results suggested that the NS protease may interact with the apoptotic program in CLL cells at two separate points. ^ In order to further investigate the role of the NS protease in CLL, patient isolates were treated with proteasome inhibitors because of previous results suggesting that the ISIS protease might be a β subunit of the proteasome. Proteasome inhibitors induced massive DNA fragmentation in every patient tested, even in those resistant to the effects of glucocorticoid and nucleoside analogs in vitro. Several other features of apoptosis were also promoted by the proteasome inhibitor, including mitochondrial alterations such as release of cytochrome c and drops in mitochondrial membrane potential. Proteasome inhibitor-induced apoptosis was associated with inhibition of NFκB, a proteasome-regulated transcription factor that has been implicated in the suppression of apoptosis in a number of systems. The NS protease inhibitor also caused a decrease in active NFκB, suggesting that the proapoptotic effects of this agent might be due to depletion of NFκB. ^ Given these findings, the role of NFκB, in conferring survival in CLL was investigated. Glucocorticoid hormone treatment was shown to cause decreases in the activity of the transcription factor, while phorbol dibutyrate, which blocks glucocorticoid-induced DNA fragmentation, was capable of upregulating NFκB. Compellingly, introduction of an undegradable form of the constitutive NFκB inhibitor, IκB, caused DNA fragmentation in several patient isolates, some of which were resistant to glucocorticoid in vitro. Transcription of anti-apoptotic proteins by NFκB was postulated to be responsible for its effects on survival, but Bcl-2 levels did not fluctuate with glucocorticoid or proteasome inhibitor treatment. ^ The in vitro values generated from these studies were organized into a database containing numbers for over 250 patients. Correlation of relevant clinical parameters revealed that levels of spontaneous apoptosis in vitro differ significantly between Rai stages. Importantly, in vitro resistance to nucleoside analogs or glucocorticoids predicted resistance to chemotherapy in vivo, and inability to achieve remission. ^