71 resultados para signaling pathway


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: High grade serous carcinoma whether ovarian, tubal or primary peritoneal, continues to be the most lethal gynecologic malignancy in the USA. Although combination chemotherapy and aggressive surgical resection has improved survival in the past decade the majority of patients still succumb to chemo-resistant disease recurrence. It has recently been reported that amplification of 5q31-5q35.3 is associated with poor prognosis in patients with high grade serous ovarian carcinoma. Although the amplicon contains over 50 genes, it is notable for the presence of several members of the fibroblast growth factor signaling axis. In particular acidic fibroblast growth factor (FGF1) has been demonstrated to be one of the driving genes in mediating the observed prognostic effect of the amplicon in ovarian cancer patients. This study seeks to further validate the prognostic value of fibroblast growth receptor 4 (FGFR4), another candidate gene of the FGF/FGFR axis located in the same amplicon. The emphasis will be delineating the role the FGF1/FGFR4 signaling axis plays in high grade serous ovarian carcinoma; and test the feasibility of targeting the FGF1/FGFR4 axis therapeutically. Materials and Methods: Spearman and Pearson correlation studies on data generated from array CGH and transcriptome profiling analyses on 51 microdissected tumor samples were used to identify genes located on chromosome 5q31-35.3 that showed significant correlation between DNA and mRNA copy numbers. Significant correlation between FGF1 and FGFR4 DNA copy numbers was further validated by qPCR analysis on DNA isolated from 51 microdissected tumor samples. Immunolocalization and quantification of FGFR4 expression were performed on paraffin embedded tissue samples from 183 cases of high-grade serous ovarian carcinoma. The expression was then correlated with clinical data to assess impact on survival. The expression of FGF1 and FGFR4 in vitro was quantified by real-time PCR and western blotting in six high-grade serous ovarian carcinoma cell lines and compared to those in human ovarian surface epithelial cells to identify overexpression. The effect of FGF1 on these cell lines after serum starvation was quantified for in vitro cellular proliferation, migration/invasion, chemoresistance and survival utilizing a combination of commercially available colorimetric, fluorometric and electrical impedance assays. FGFR4 expression was then transiently silenced via siRNA transfection and the effects on response to FGF1, cellular proliferation, and migration were quantified. To identify relevant cellular pathways involved, responsive cell lines were transduced with different transcription response elements using the Cignal-Lenti reporter system and treated with FGF1 with and without transient FGFR4 knock down. This was followed by western blot confirmation for the relevant phosphoproteins. Anti-FGF1 antibodies and FGFR trap proteins were used to attempt inhibition of FGF mediated phenotypic changes and relevant signaling in vitro. Orthotopic intraperitoneal tumors were established in nude mice using serous cell lines that have been previously transfected with luciferase expressing constructs. The mice were then treated with FGFR trap protein. Tumor progression was then followed via bioluminescent imaging. The FGFR4 gene from 52 clinical samples was sequenced to screen for mutations. Results: FGFR4 DNA and mRNA copy numbers were significantly correlated and FGFR4 DNA copy number was significantly correlated with that of FGF1. Survival of patients with high FGFR4 expressing tumors was significantly shorter that those with low expression(median survival 28 vs 55 month p< 0.001) In a multivariate cox regression model FGFR expression significantly increased risk of death (HR 2.1, p<0.001). FGFR4 expression was significantly higher in all cell lines tested compared to HOSE, OVCA432 cell line in particular had very high expression suggesting amplification. FGF1 was also particularly overexpressed in OVCA432. FGF1 significantly increased cell survival after serum deprivation in all cell lines. Transient knock down of FGFR4 caused significant reduction in cell migration and proliferation in vitro and significantly decreased the proliferative effects of FGF1 in vitro. FGFR1, FGFR4 traps and anti-FGF1 antibodies did not show activity in vitro. OVCA432 transfected with the cignal lenti reporter system revealed significant activation of MAPK, NFkB and WNT pathways, western blotting confirmed the results. Reverse phase protein array (RPPA) analysis also showed activation of MAPK, AKT, WNT pathways and down regulation of E Cadherin. FGFR trap protein significantly reduced tumor growth in vivo in an orthotopic mouse model. Conclusions: Overexpression and amplification of several members of the FGF signaling axis present on the amplicon 5q31-35.3 is a negative prognostic indicator in high grade serous ovarian carcinoma and may drive poor survival associated with that amplicon. Activation of The FGF signaling pathway leads to downstream activation of MAPK, AKT, WNT and NFkB pathways leading to a more aggressive cancer phenotype with increased tumor growth, evasion of apoptosis and increased migration and invasion. Inhibition of FGF pathway in vivo via FGFR trap protein leads to significantly decreased tumor growth in an orthotopic mouse model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CD4+ T helper (Th) lymphocytes are vital for integrating immune responses by orchestrating the function of other immune cell types. Naïve Th cells can differentiate into different effector subsets that are characterized by their cytokine profile and immune regulatory functions. These subsets include Th1, Th2, Th17, natural and inducible regulatory T cells (nTreg and iTreg respectively), among others. We focused our investigation on two Th lineages, Th17 and regulatory T cells, with opposing functions in the immune system. These subsets have been suggested to be reciprocally regulated since they both require TGF-b for their development. We investigated the role of the Treg-associated master transcription factor Foxp3, and found that Foxp3 inhibits Th17 cell generation by preventing the transcriptional activity of the two main Th17-specific transcription factors, nuclear orphan receptors RORa and RORgt. At the molecular level, we identified two different functional domains in Foxp3 required for such inhibition: the LQALL sequence in exon 2 and the TIP60/HDAC7 binding domain. These domains could be crucial to either prevent the association of the nuclear receptors to coactivators or to recruit histone deacetylases to RORa- or RORgt-target genes. Since TGF-b is a common cytokine required for the commitment towards both Th lineages, we determined the role of the TGF-b-dependent signaling pathway in the generation of each subset. By using mice with deficiencies in signaling molecules downstream of TGF-b, we found that while Smad2, Smad3 and Smad4 are required for the generation of iTreg cells, only Smad2 is indispensable for the induction of IL-17-producing cells, suggesting that TGF-b induces these T helper lineages through differential signaling pathways. Thus, our findings describe novel transcriptional regulatory mechanisms that control the generation of two T helper lineages with opposing functions. These findings could provide novel therapeutic targets to treat diseases where the balance of these T cells is dysregulated, such as in autoimmunity, chronic infectious diseases and cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antiangiogenesis is a promising anti-tumor strategy through inhibition tumor vascularformation to suppress tumor growth. Targeting specific VEGF/R has been showntherapeutic benefits in many cancer types and become a first approvedantiangiogenic modalities by Food and Drug Administration (FDA) in United States.However, interruption of homeostasis in normal tissues that is likely due to theinhibition of VEGF/R signaling pathway induces unfavorable side effects. Moreover,cytostatic nature of antiangiogenic drugs frequently causes less tumor cell specifickilling activity, and cancer cells escaped from cell death induced by these drugseven gain more malignant phenotypes, resulting in tumor invasion and metastasis.To overcome these issues, we developed a novel anti-tumor therapeutic EndoCDfusion protein which linked endostatin (Endo) to cytosine deaminase-uracilvphosphoribosyl transferase (CD). Endo targets unique tumor endothelial cells toprovide tumor-specific antiangiogenesis activity and also carries CD to the localtumor area, where it serves nontoxic prodrug 5-fluorocytosine (5-FC) enzymaticconversion reaction to anti-metabolite chemotherapy drug 5-fluorouracil (5-FU). Wedemonstrated that 5-FU concentration was highly increased in tumor sites, resultingin high level of endothelial cells and tumor cells cytotoxic efficacy. Furthermore,EndoCD/5-FC therapy decreased tumor growth and colorectal liver metastasisincident compared with bevacizumab/5-FU treatment in human breast and colorectalliver metastasis orthotropic animal models. In cardiotoxicity safety profile,EndoCD/5-FC is a contrast to bevacizumab/5-FU; lower risk of cardiotoxicityinduction or heart function failure was found in EndoCD/5-FC treatment thanbevacizumab/5-FU does in mice. EndoCD/5-FC showed more potent therapeuticefficacy with high safety profile and provided stronger tumor invasion or metastasisinhibition than antiangiogenic drugs. Together, EndoCD fusion protein with 5-FCshowed dual tumor targeting activities including antiangiogenesis and tumor localchemotherapy, and it could serve as an alternative option for antiangiogenic therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies with less than 5% of five year survival rate. New molecular markers and new therapeutic targets are urgently needed for patients with PDA. Oncogenic receptor tyrosine kinase Axl has been reported to be overexpressed in many types of human malignancies, including diffuse glioma, melanoma, osteosarcoma, and carcinomas of lung, colon, prostate, breast, ovary, esophagus, stomach, and kidney. However, the expression and functions of Axl in PDA are unclear. We hypothesized that Axl contributes to the development and progression of PDA. We examined Axl expression in 54 human PDA samples and their paired benign pancreatic tissue by immunohistochemistry, we found that Axl was overexpressed in 70% of stage II PDAs, but only 22% of benign ducts (P=0.0001). Axl overexpression was associated with higher frequencies of distant metastasis and was an independent prognostic factor for both poor overall and recurrence-free survivals in patients with stage II PDA (p = 0.03 and 0.04). Axl silencing by shRNA in pancreatic cancer cell lines, panc-28 and Panc-1, decreased tumor cell migration and invasion and sensitized PDA cells to apoptosis stimuli such as γ-irradiation and serum starvation. In addition, we found that Axl-mediated Akt and NF-κB activation and up regulation of MMP2 were involved in the invasion, migration and survival of PDA cells. Thus, we demonstrate that Axl plays an important role in the development and progression of PDA. Targeting Axl signaling pathway may represent a new approach for the treatment of PDA. To understand the molecular mechanisms of Axl overexpression in PDA, we found that Axl expression was down-regulated by hematopoietic progenitor kinase 1 (HPK1), a newly identified tumor suppressor in PDA. HPK1 is lost in over 95% of PDAs. Restoration of HPK1 in PDA cells down-regulated Axl expression. HPK1-mediated Axl degradation was inhibited by leupeptin, baflomycin A1, and monensin, suggesting that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway. HPK1 interacted with and phosphorylated dynamin, a critical component of endocytosis pathway. Overexpression of dominant negative form of dynamin blocked the HPK1-mediated Axl degradation. Therefore we concluded that HPK1-mediated Axl degradation was through endocytosis-lysosome pathway and loss of HPK1 expression may contribute to Axl overexpression in PDAs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to determine the effects of the histone deacetylase inhibitor, MS-275, on the Fas signaling pathway and susceptibility of osteosarcoma (OS) to Fas ligand (FasL)-induced cell death. OS metastasizes almost exclusively to the lungs. We have shown that Fas expression in OS cells is inversely correlated with their metastatic potential. Fas+ cells are rapidly eliminated when they enter the lungs via interaction with FasL, which is constitutively expressed in the lungs. Fas- OS cells escape this FasL-induced apoptosis and survive in the lung microenvironment. Moreover, upregulation of Fas in established OS lung metastases results in tumor regression. Therefore, agents that upregulate Fas expression or activate the Fas signaling pathway may have therapeutic potential. Treatment of Fas- metastatic OS cell lines with 2 μM MS-275 sensitized cells to FasL-induced cell death in vitro. We found that MS-275 did not alter the expression of Fas on the cell surface; rather it resulted in increased levels of Fas within the membrane lipid rafts, as demonstrated by an increase in Fas expression in detergent insoluble lipid raft fractions. We further demonstrated that following MS-275 treatment, Fas colocalized with GM1+ lipid rafts and that there was a decrease in c-FLIP (cellular FLICE-inhibitory protein) mRNA and protein. Downregulation of c-FLIP correlated with caspase activation and apoptosis induction. Transfection of cells with shRNA to c-FLIP also resulted in the localization of Fas to lipid rafts. These studies indicate that MS-275 sensitizes OS cells to FasL by upregulating the expression of Fas in membrane lipid rafts, which correlated with the downregulation of c-FLIP. Treatment of nu/nu-mice with established OS lung metastases with oral MS-275 resulted in increased apoptosis, a significant inhibition of c-FLIP expression in tumors and tumor regression. Histopathological examination of mice showed no significant organ toxicity. Overall, these results suggest that the mechanism by which MS-275 sensitizes OS cells and lung metastases to FasL-induced cell death may be by a reduction in the expression of c-FLIP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well established that the chimeric Bcr-Abl oncoprotein resulting from fusing 3$\sp\prime$ ABL sequences on chromosome 9 to 5$\sp\prime$ BCR sequences on chromosome 22 is the primary cause of Philadelphia chromosome-positive (Ph$\sp1$) leukemias. Although it is clear that the cis-Bcr sequence present within Bcr-Abl is able to activate the tyrosine kinase activity and F-actin binding capacity of Bcr-Abl which is critical for the transforming ability of BCR-ABL, the biological role of normal BCR gene product (P160 BCR) remains largely unknown. The previous finding by our lab that P160 BCR forms stable complexes with Bcr-Abl oncoprotein in Ph$\sp1$-positive leukemic cells implicated P160 BCR in the pathogenesis of Ph$\sp1$-positive leukemias. Here, we demonstrated that P160 BCR physically interacts with P210 BCR-ABL and become tyrosine phosphorylated when co-expressed with P210 BCR-ABL in COS1 cells while no tyrosine phosphorylation of P160 BCR can be detected when it is expressed alone. The results suggest that P160 BCR is a target for the Bcr-Abl tyrosine kinase. Although we were unable to detect stable physical interaction between P160 BCR and P145 c-ABL (Ib) in COS1 cells overexpressing both proteins, P160 BCR was phosphorylated on tyrosine residues when co-expressed with activated tyrosine kinase of P145 c-ABL (Ib). In addition, studies of tyrosine phosphorylation of BCR deletion mutants and 2-dimensional tryptic mapping of in vitro phosphorylated wild type and mutant (tyrosine to phenylalanine) Bcr-Abl indicated that tyrosine 177, 283 and 360 of Bcr represent some of the phosphorylation sites. Even though the significance of tyrosine phosphorylation of residues 283 and 360 of Bcr has not been determined, tyrosine phosphorylation of residue 177 within Bcr-Abl has been reported to be critical for its interaction with Grb2 molecule and subsequent activation of Ras signaling pathway. Here, we further demonstrated that tyrosine 177 phosphorylated P160 BCR is also able to bind to Grb2 molecule suggesting the role of P160 BCR in the Ras signaling pathway.^ Surprisingly, using 3$\sp\prime$ BCR antisense oligonucleotide to reduce the expression of P160 BCR without interfering with the expression of BCR-ABL resulted in increased growth or survival of B15 cells and M3.16 cells expressing either P185 BCR-ABL or P210 BCR-ABL respectively. The results provided strong arguments that P160 BCR may function as a negative regulator for cell growth.^ Considering all these results, we hypothesize that P160 BCR negatively regulate cell growth and tyrosine phosphorylation of P160 BCR turns off its growth suppressor function and turns on its growth stimulatory function. We further speculate that Bcr-Abl oncoprotein in leukemia cells stably interacts with and constitutively phosphorylates portions of P160 BCR converting it into a growth stimulatory state. In normal cells, the growth suppressor effects of P160 BCR could only be transiently and conditionally switched to growth stimulatory action by a strictly regulated cellular tyrosine kinase such as c-ABL. The model will be further discussed in the text. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The coordination of the apoptotic program necessitates the timely expression of sensor, effector, and mediator molecules. Fas/CD95, a transmembrane receptor which tethers the cell-death machinery, triggers apoptosis to maintain immune homeostasis, tolerance, and surveillance. Dysregulation in Fas-mediated apoptosis, either from disproportionate expression or disruptions in the downstream signaling pathway, manifests in autoimmune disorders and certain malignant progression. ^ In this project, the transcriptional requirements underlying two modulators of Fas expression were investigated. In T-lymphocytes, activation results in potent Fas upregulation followed by an acquisition of sensitivity towards FasL-mediated apoptosis. Human fas promoter cloning and analysis have identified a cis-element critical for inducible Fas expression. EMSA studies using this region demonstrated a constitutive association with the transcription factor Sp1 and inducible NF-κB binding in response to activation. These interactions were mutually exclusive, as the rB/Sp1 element bound with recombinant Sp1 was readily displaced by increasing amounts of NF-κB p50. Thus, Fas upregulation by T-cell activation stimuli is dependent upon NF-κB binding at the fas promoter. ^ The capacity of Sp1 to direct basal Fas expression was examined through mutagenesis of several GC-rich regions within the core fas promoter. Reporter analysis of single or combinatorial mutant GC-box constructs revealed usage of a particular GC-element in moderating over 50% of basal fas transcription. Inducible expression was Sp1-independent, however, since activated Jurkat cells containing fas Sp1-mutant constructs retained equivalent reporter induction. Overall, a dual-level of transcriptional control exists in fas, where constitutive activity is monitored through Sp1 binding, whereas T-cell activation obligates NF κB transactivation. ^ In response to genotoxic damage, p53 modulates Fas levels partly by a transcription-dependent mechanism. Reconstitution of wild-type p53 in the hepatoma cell line Hep3B readily induced Fas transcription. Furthermore, fas promoter analysis identified an undescribed p53 responsive element which, when deleted, ablated p53-mediated reporter activity. Therefore, the pro-apoptotic function mediated by p53 is driven partially through the enhancement of Fas expression. ^ Altogether, events elicting Fas transcription may invoke single or overlapping mechanisms that converge at the level of promoter activity. Agents that enhance or attenuate these pathways may be therapeutically beneficial in modulating the expression and sensitivity towards Fas-dependent apoptosis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Osteopontin (OPN) is a highly-phosphorylated extracellular matrix protein localized in bone, kidney, placenta, T-lymphocytes, macrophages, smooth muscle of the vascular system, milk, urine, and plasma. In ROS 17/2.8 osteoblast-like osteosarcoma cells, 1,25-dihydroxyvitamin D3 [1,25(OH)2D 3] regulates OPN at the transcriptional level resulting in increased steady state mRNA levels and increased production of OPN protein, maximal at 48 hours. Using ROS 17/2.8 cells as an osteoblast model, OPN was purified from culture medium after three hour treatments of either vehicle (ethanol) or 1,25(OH)2D3 via barium citrate precipitation followed by immunoaffinity chromatography. ^ Here, further evidence of regulation of OPN by 1,25(OH)2D 3 at the posttranslational level is presented. Prior to the up-regulation of OPN at the transcriptional level, 1,25(OH)2D3 induces a shift in OPN isoelectric point (pI) detected on two-dimensional gels from pI 4.6 to pI 5.1. Loading equal amounts of [32P]-labeled OPN recovered from ROS 17/2.8 cells exposed to 1,25(OH)2D3 or vehicle alone for three hours reveals that the shift from pI 4.6 to 5.1 is the result of reduced phosphorylation. Using structural analogs to 1,25(OH) 2D3, analog AT [25-(OH)-16-ene-23-yne-D3], which triggers Ca2+ influx through voltage sensitive Ca2+ channels but does not bind to the vitamin D receptor, mimicked the OPN pI shift while analog BT [1,25(OH)2-22-ene-24-cyclopropyl-D 3], which binds to the vitamin D receptor but does not allow Ca 2+ influx, did not. Inclusion of the Ca2+ channel blocker nifedipine also blocks the charge shift conversion of OPN. Further analysis of the signaling pathway initiated by 1,25(OH)2D3 reveals that inhibition of the cyclic 3′,5′ -adenosine monophosphate-dependent kinase, protein kinase A, or inhibition of the cyclic 3′,5′-guanine monophosphate-dependent kinase, protein kinase G, also prevents the charge shift conversion. ^ Isolation of OPN from rat femurs and tibiae provides evidence for the existence of these two OPN charge forms in vivo, evidenced by differential migration on isoelectric focusing gels and sodium dodecyl sulfate-polyacrylamide gels. Peptide sequencing of rat long bone fractions revealed the presence of a presumed dentin specific protein, dentin matrix protein-1 (DMP-1). Western blot analysis confirmed the existence of DMP-1 in these fractions. ^ Using the OPN charge forms in functional assays, it was determined that the charge forms have differential roles in both cell surface and mineralization functions. In cell attachment assays and Ca2+ influx assays using PC-3 prostate cancer cells, the pI 5.1 charge form of OPN was found to permit binding and increase intracellular Ca2+ concentrations of PC-3 cells. The increase in intracellular Ca2+ concentration was found to be integrin αvβ3-dependent. In mineralization assays, the pI 4.6 charge form of OPN promoted hydroxyapatite formation, while the pI 5.1 charge form had improved Ca2+ binding ability. ^ In conclusion, these findings suggest that 1,25(OH) 2D3 regulates OPN not only at the transcriptional level, but also plays a role in determination of the OPN phosphorylation state. The latter involves a short term (less than three hours) treatment and is associated with membrane-initiated Ca2+ influx. Functional assays utilizing the two OPN charge forms reveal the dependence of OPN post-translational state on its function. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mitogen-activated protein kinase (MAPK) cascades are conserved eukaryotic signaling modules consisting of a MAPK, a MAPKK and a MAP3K. MAPK cascades are involved in many cellular responses including proliferation, differentiation, apoptosis, stress and immune responses. ^ The first part of this thesis describes the cloning and biochemical analysis of JNKK2, a member of MAPKK gene family. Our results demonstrate that JNKK2 is a specific JNK activator and activates the JNK-dependent signal transduction pathway in vivo by inducing c-Jun and ATF2-mediated gene expression. We also found that JNKK2 is specifically activated by a MAP3K MEKK2 through formation of MEKK2-JNKK2-JNK1 triple complex module. JNKK2 is likely to mediate specific upstream signals to activate JNK cascade. ^ The second part of this thesis describes biochemical and gene disruption analysis of MEKK3, a member of MAP3K gene family. We showed that overexpression of MEKK3 strongly activates both JNK and p38 MAPKs but only weakly activates ERK. MEKK−/− embryos die at about embryonic day (E) 11. MEKK3−/− embryos displayed defects in blood vessel development in the yolk sacs, and in the myocardium and endocardium development at E9.5. The angiogenesis in the head, intersomitic region and placenta was also abnormal. These results demonstrate that MEKK3, a member of MAP3K MEKK/STE11 subgene family, is essential for early embryonic cardiovascular development. Furthermore, it was found that disruption of MEKK3 did not alter the expression of vascular endothelial growth factor-1 (VEGF-1), angiopoietin-1, -2 and their respective receptors Flt-1, Flk-1, Tie-1, Tie-2. Finally, MEKK3 was shown to activate myocyte-specific enhancer factor 2C (MEF2C), a crucial transcription factor for early embryonic cardiovascular development through the p38 MAPK cascade, suggesting that MEF2C is one of the key targets of the MEEKK3 signaling pathway during early embryonic cardiovascular development. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CEACAM1-L is an adhesion molecule that suppress the growth of prostate, breast, colon and endometrial tumors. In this study we defined the domain involved in CEACAM1-L tumor suppression activity. DU145 prostate cancer cells were infected with recombinant adenoviruses containing various CEACAM1-L mutant genes, and the effects of the mutant proteins on the growth of DU145 cells were assessed in a nude-mice xenograft model. We found that expression of the CEACAM1-L cytoplasm domain alone led to growth suppression of DU145 cells. These results suggest that the cytoplasmic domain of CEACAM1-L is necessary and sufficient for its growth-suppressive function. ^ The cytoplasmic domain of CEACAM1-L is presumed to be involved in a signaling pathway resulting in the suppression of tumor cell growth. It was not clear whether post-translational modification of CEACAM1-L is required for tumor suppressor function, therefore the importance of phosphorylation in growth-inhibitory signaling pathway was investigated. Full-length CEACAM1-L was found to be phosphorylated in vivo in both tyrosine and serine residues. Mutation of tyrosine 488 to phenylalanine did not abolish the tumor-suppressive activity of CEACAM1-L while mutation of serine 503 to alanine abolished the growth-inhibitory activity. In addition, mutation of serine 503 to aspartic acid produced tumor-suppressive activity similar to that of the wild-type CEACAM1-L. These results suggested that only phosphorylation at serine 503 is essential for CEACAM1-L's growth-inhibitory function in vivo. ^ Phosphorylation of CEACAM1-L may lead to its interaction with molecules in CEACAM1-L's signaling pathway. In the last part of this study we demonstrate that CEACAM1 is able to interact with the adapter protein p66Shc. p66Shc was found to be co-immunoprecipitated with full length CEACAM1-L but not with CEACAM1-L lacking its cytoplasmic tail. Additionally this interaction occurred in the absence of the tyrosine phosphorylation of CEACAM1-L. These results suggest that p66Shc is able to interact with the cytoplasmic domain of CEACAM1-L and this interaction does not require tyrosine phosphorylation. ^ In conclusion, this study suggests that CEACAM1-L signals tumor suppression through its cytoplasmic domain by initially becoming phosphorylated on serine 503. Additionally, the interaction with p66Shc may be involved in CEACAM1-L's signaling pathway. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Skeletal muscles can adapt to increased mechanical forces (or loading) by increasing the size and strength of the muscle. Knowledge of the molecular mechanisms by which muscle responds to increased loading may lead to the discovery of novel treatment strategies for muscle wasting and frailty. The objective of this research was to examine the temporal associations between the activation of specific signaling pathway intermediates and their potential upstream regulator(s) in response to increased muscle loading. Previous work has demonstrated that focal adhesion kinase (FAK) activity is increased in overloaded hypertrophying skeletal muscle. Thus FAK is a candidate for transducing the loading stimulus in skeletal muscle, potentially by activating phosphatidylinositol 3-kinase (PI3K) and members of the mitogen-activated protein kinase (MAPK) family. However, it was unknown if muscle overload would result in activation of PI3K or the MAPKs. Thus, this work seeks to characterized the temporal response of (1) MAPK phosphorylation (including Erk 2, p38 MAPK and JNK), (2) PI3K activity, and (3) FAK tyrosine phosphorylation in response to 24 hours of compensatory overload in the rat soleus and plantaris muscles. In both muscles, overload resulted in transient Increases in the phosphorylation state of Erk2 and JNK, which peaked within the first hour of overload and returned to baseline thereafter. In contrast, p38 MAPK phosphorylation remained elevated throughout the entire 24-hour overload period. Moreover, overload increased PI3K activity only, in the plantaris and only at 12 hours. Moreover, 24 hours of overload induced a significant increase in total protein content in the plantaris but not the soleus. Thus an increase in total muscle protein content within the 24-hour loading period was observed only in muscle exhibiting increased PI3K activity. Surprisingly, FAK tyrosine phosphorylation was not increased during the overload period in either muscle, indicating that PI3K activation and increased MAPK phosphorylation were independent of increased FAK tyrosine phosphorylation. In summary, increased PI3K activity and sustained elevation of p38 MAPK phosphorylation were associated with muscle overload, identifying these pathways as potential mediators of the early hypertrophic response to skeletal muscle overload. This suggests that stimuli or mechanisms that activate these pathways may reduce/minimize muscle wasting and frailty. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adhesion involves interactions between cells or cells with extracellular matrix components and is a fundamental process for all multicellular organisms as well as many pathogenic microbes. Integrins are heterodimeric transmembrane proteins that function as adhesion molecules and transduce signals between the extracellular environment and the intracellular cytoskeletal machinery. β1 integrin subfamily is highly expressed on T lymphocytes and mediates cell spreading, adhesion and coactivation. T lymphocytes have an important role in the regulation and homeostasis of the immune system therefore, the goals of this study were to first to investigate β1 integrin interaction with fibronectin binding protein A (FnbpA), a surface protein expressed on gram-negative bacteria Staphylococcus aureus. Second, characterize the association and function of a non-integrin surface protein, CD98, with β1 integrins on T lymphocytes. ^ FnbpA binds to fibronectin (FN), also a ligand for α5β1 and α4β1 integrins on T lymphocytes. Since both bacterial proteins FnbpA and T cell integrins utilize FN, it was of interest to determine the effects FnbpA on T cell activation. Results demonstrated that recombinant FnbpA (rFnbpA) coimmobilized with OKT3 mediated T cell coactivation in a soluble FN-dependent manner. Integrin α5β1 was identified as the main integrin utilized by Staphylococcus aureus FnbpA from studies using soluble antibodies to inhibit T cell proliferation and parallel plate flow chamber assays. The mechanism of rFnbpA-mediated coactivation was one that used soluble FN as a bridge between rFnbpA and integrin α5β1 on the T lymphocyte. ^ Since integrins are utilized by T lymphocytes and bacterial proteins, it was of interest to identify proteins involved in integrin regulation. Anti-CD98 mAb 80A10 was identified and characterized from a screen to identify surface proteins involved in integrin signaling and functions. CD98 is a non-integrin protein that was sensitive to integrin inhibition in human T lymphocyte aggregation and activation, thus suggested that CD98 shared a common signaling pathway with integrins. These results led to the question of whether CD98 physically associates with β1 integrins. Fluorescence microscopy and biochemical analysis determined that CD98 is specifically associated with β1 integrin on human T lymphocytes and may be part of a larger multimolecular signaling complex. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many human diseases, including cancers, result from aberrations of signal transduction pathways. The recent understanding of the molecular biochemistry of signal transduction in normal and transformed cells enable us to have a better insight about cancer and design new drugs to target this abnormal signaling in the cancer cells. Tyrosine kinase pathway plays a very important role in normal and cancer cells. Enhanced activity of tyrosine kinases has been associated with many human cancer types. Therefore, identifying the type of tyrosine kinases involved in a particular cancer type and blocking these tyrosine kinase pathways may provide a way to treat cancer. Receptor tyrosine kinase expression, namely epidermal growth factor receptor (EGFR) family, was examined in the oral squamous cell carcinoma patients. The expression levels of different members of the EGFR family were found to be significantly associated with shorter patients' survival. Combining EGFR, HER-2/neu, and HER-3 expression can significantly improve the predicting power. The effect of emodin, a tyrosine kinase inhibitor, on these receptors in head and neck squamous cell carcinoma cell lines was examined. Emodin was found to suppress the tyrosine phosphorylation of HER-2/neu and EGF-induced tyrosine phosphorylation of EGFR. Emodin also induced apoptosis and downregulated the expression of anti-apoptotic protein bcl-2 in oral squamous cell carcinoma cells. It is known that tyrosine kinase pathways are involved in estrogen receptor signaling pathway. Therefore, the effects of inhibiting the tyrosine kinase pathway in estrogen receptor-positive breast cancers was studied. Emodin was found to act similarly to antiestrogens, capable of inhibiting estrogen-stimulated growth and DNA synthesis, and the phosphorylation of Rb protein. Interestingly, emodin, and other tyrosine kinase inhibitors, such as RG 13022 and genistein, depleted cellular levels of estrogen receptor protein. Emodin-induced depletion of estrogen receptor was mediated by the proteasome degradation pathway. In summary, we have demonstrated that tyrosine kinase pathways play an important role in oral squamous cell carcinoma and estrogen receptor-positive breast cancer. Targeting the tyrosine kinases by inhibitors, such as emodin, may provide a potential way to treat the cancer patients. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cell signaling by nitric oxide (NO) through soluble guanylyl cyclase (sGC) and cGMP production regulates physiological responses such as smooth muscle relaxation, neurotransmission, and cell growth and differentiation. Although the NO receptor, sGC, has been studied extensively at the protein level, information on regulation of the sGC genes remains elusive. In order to understand the molecular mechanisms involved at the level of gene expression, cDNA and genomic fragments of the murine sGCα1 subunit gene were obtained through library screenings. Using the acquired clones, the sGCα 1 gene structure was determined following primer extension, 3 ′RACE and intron/exon boundary analyses. The basal activity of several 5′-flanking regions (putative promoter regions) for both the α1 and β1 sGC subunits were determined following their transfection into mouse N1E-115 neuroblastoma and rat RENE1Δ14 uterine epithelial cells using a luciferase reporter plasmid. Using the sGC sequences, real-time RT-PCR assays were designed to measure mRNA levels of the sGC α1 and β1 genes in rat, mouse and human. Subsequent studies found that uterine sGC mRNA and protein levels decreased rapidly in response to 17β-estradiol (estrogen) in an in vivo rat model. As early as 1 hour following treatment, mRNA levels of both sGC mRNAs decreased, and reached their lowest level of expression after 3 hours. This in vivo response was completely blocked by the pure estrogen receptor antagonist, ICI 182,780, was not seen in several other tissues examined, did not occur in response to other steroid hormones, and was due to a post-transcriptional mechanism. Additional studies ex vivo and in various cell culture models suggested that the estrogen-mediated decreased sGC mRNA expression did not require signals from other tissues, but may require cell communication or paracrine factors between different cell types within the uterus. Using chemical inhibitors and molecular targeting in other related studies, it was revealed that c-Jun-N-terminal kinase (JNK) signaling was responsible for decreased sGC mRNA expression in rat PC12 and RFL-6 cells, two models previously determined to exhibit rapid decreased sGC mRNA expression in response to different stimuli. To further investigate the post-transcriptional gene regulation, the full length sGCα1 3′-untranslated region (3′UTR) was cloned from rat uterine tissue and ligated downstream of the rabbit β-globin gene and expressed as a chimeric mRNA in the rat PC12 and RFL-6 cell models. Expression studies with the chimeric mRNA showed that the sGCα 1 3′UTR was not sufficient to mediate the post-transcriptional regulation of its mRNA by JNK or cAMP signaling in PC12 and RFL-6 cells. This study has provided numerous valuable tools for future studies involving the molecular regulation of the sGC genes. Importantly, the present results identified a novel paradigm and a previously unknown signaling pathway for sGC mRNA regulation that could potentially be exploited to treat diseases such as uterine cancers, neuronal disorders, hypertension or various inflammatory conditions. ^