89 resultados para post-transcriptional regulation
Resumo:
Retinoic acid is a small lipophilic molecule that exerts profound effects on the growth and differentiation of both normal and transformed cells. It is also a natural morphogen that is critical in the development of embryonic structures. The molecular effects of retinoic acid involve alterations in the expression of several proteins and these changes are presumably mediated in part by alterations in gene expression. For instance, retinoic acid causes a rapid induction of tissue transglutaminase, an enzyme involved in protein cross-linking. The molecular mechanisms responsible for the effects of retinoic acid on gene expression have not been characterized. To approach this question, I have isolated and characterized tissue transglutaminase of cDNA clones. The deduced amino acid sequences of tissue transglutaminase and of factor XIIIa showed a relatively high degree of homology in their putative calcium binding domains.^ To explore the mechanism of induction of this enzyme, both primary (macrophages) and cultured cells (Swiss 3T3-C2 and CHO fibroblasts) were used. I found that retinoic acid is a general inducer of tissue transglutaminase mRNA in these cells. In murine peritoneal macrophages retinoic acid causes a rapid accumulation of this mRNA and this effect is independent of concurrent protein synthesis. The retinoic acid effect is not mediated by a post-transcriptional increase in the stability of the tissue transglutaminase mRNA, but appears to involve an increase in the transcription rate of the tissue transglutaminase gene. This provides the first example of regulation by retinoic acid of a specific gene, supporting the hypothesis that these molecules act by directly regulating the transcriptional activity of specific genes. A molecular model for the effects of retinoic acid on the expression of genes linked to cellular proliferation and differentiation is proposed. ^
Resumo:
The cellular mechanisms through which adult rat skeletal muscle protein is regulated during resistance exercise and training was investigated. A model of non-voluntary resistance exercise was described which involves the electrically-stimulated contraction of the lower leg muscles of anesthetized rats against a weighted pulley-bar. Muscle protein synthesis rates were measured by in vivo constant infusion of $\sp3$H-leucine following a single bout of resistance exercise. Specific messenger RNA levels were determined by dot-blot hybridization analysis using $\sp{32}$P-labelled DNA probes after a single bout and multiple bouts of phasic training. The effects of phasic training on increasing skeletal muscle mass was assessed. Between 12 and 36 hours following a single resistance exercise bout (24-192 contractions), total mixed and myofibril protein synthesis rates were significantly increase (32%-65%) after concentric (gastrocnemius m.) and eccentric (tibialis anterior m.) contractions. Eccentric contractions had greater effects on myofibril synthesis with more prolonged increases in synthesis rates. Lower numbers of eccentric than concentric contractions were required to increase synthesis. Cellular RNA was increased after exercise but the relative levels of skeletal $\alpha$-actin and cytochrome c mRNAs were unchanged. Since increases in synthesis rates exceeded increases in RNA, post-transcriptional mechanisms may be primarily responsible for increased protein synthesis after a resistance exercise bout. After 10-22 weeks of phasic eccentric resistance training, muscle enlargement (16%-30%) was produced in the tibialis anterior m. after all training paradigms examined. In contrast, gastrocnemius m. enlargement after phasic concentric training occurred after moderate (24/bout) but not after high (192/bout) repetition training. The absence of muscle growth in the gastrocnemius m. after high repetition training despite increased synthesis rates after the initial bout and RNA and possibly mRNA accumulation during training suggests a role for post-translational mechanisms (protein degradation) in the control of muscle growth in the gastrocnemius m. It is concluded that muscle protein during resistance exercise and training is regulated at several cellular levels. The particular response may be influenced by the exercise intensity and duration, the training frequency and the type of contractile work (eccentric vs. concentric) performed. ^
Resumo:
Expression of the Na$\sp+$/glucose cotransporter (SGLT1), a differentiated function of the pig kidney epithelial cell line LLC-PK$\sb1$ derived from proximal tubule, was further investigated. The differentiation inducer hexamethylene bisacetamide (HMBA) and IBMX, an inhibitor of cAMP phosphodiesterase, each stimulated a significant increase in Na$\sp+$/glucose cotransport activity, levels of the 75 kD cotransporter subunit and steady-state levels of the SGLT1 message. The action of HMBA is associated with involvement of polyamines and protein kinase C, and is synergistic with cAMP. We provide evidence that cAMP-elevating agents increase Na$\sp+$/glucose cotransporter expression, at least in part, via a post-transcriptional mechanism. Two molecular species of SGLT1 mRNA (3.9 kb and 2.2 kb) are transcribed from the same gene in LLC-PK$\sb1$ cells and differ only in the length of the 3$\sp\prime$ untranslated region (3$\sp\prime$ UTR). cAMP elevation differentially stabilized the 3.9 kb SGLT1 transcript from degradation but not the 22 kb species. UV-cross-linking and label transfer experiments indicated that cyclic AMP elevation was associated with formation of a 48 kD protein complex with a specific domain within the 3$\sp\prime$ UTR of SGLT1 mRNA. The binding was competitively inhibited by poly (U) and other U-rich RNA species such as c-fos ARE, and modulated by a protein kinase A-mediated phosphorylation/dephosphorylation mechanism. The binding site was mapped to a 120-nucleotide 3$\sp\prime$ UTR sequence which contains a uridine-rich region (URE). Our study provides the first demonstration that renal SGLT1 is post-transcriptionally regulated by a phosphorylation/dephosphorylation mechanism, and provides a deeper insight into gene regulation of this physiologically important cotransporter. ^
Resumo:
The cytochrome P450 monooxygenase system consists of NADPH- cytochrome P450 reductase (P450 reductase) and cytochromes P450, which can catalyze the oxidation of a wide variety of endogenous and exogenous compounds, including steroid hormones, fatty acids, drugs, and pollutants. The functions of this system are as diverse as the substrates. P450 reductase transfers reducing equivalents from NADPH to P450, which in turn catalyzes metabolic reactions. This enzyme system has the highest level of activity in the liver. It is also present in other tissues, including brain. The functions of this enzyme system in brain seem to include: neurotransmission, neuroendocrinology, developmental and behavioral modulation, regulation of intracellular levels of cholesterol, and potential neurotoxicity.^ In this study, we have set up the rat glioma C6 cell line as an in vitro model system to examine the expression, induction, and tissue-specific regulation of P450s and P450 reductase. Rat glioma C6 cells were treated with P450 inducers phenobarbital (PB) or benzo(a)anthracene (BA). The presence of P450 reductase and of cytochrome P450 1A1, 1A2, 2A1, 2B1/2, 2C7, 2D1-5 and 2E1 was detected by reverse transcription followed by polymerase chain reaction (RT-PCR) and confirmed by restriction digestion. The induction of P450 1A1 and 2B1/2 and P450 reductase was quantified using competitive PCR. Ten- and five-fold inductions of P450 1A and 2B mRNA after BA or PB treatments, respectively, were detected. Western blot analysis of microsomal preparations of glioma C6 cells demonstrated the presence of P450 1A, 2B and P450 reductase at the protein level. ELISAs showed that BA and PB induce P450 1A and 2B proteins 7.3- and 13.5-fold, respectively. Microsomes prepared from rat glioma C6 cells showed cytochrome P450 CO difference spectra with absorption at or near 450 nm. Microsomes prepared from rat glioma C6 cells demonstrated much higher levels of ethoxyresorufin O-deethylase (EROD) and pentoxyresorufin O-dealkylase (PROD) activity, when treated with BA or PB, respectively. These experiments provide further evidence that the rat glioma C6 cell line contains an active cytochrome P450 monooxygenase system which can be induced by P450 inducers. The mRNAs of P450 1A1 and 2B1/2 can not bind to the oligo(dT) column efficiently, indicating they have very short poly(A) tails. This finding leads us to study the tissue specific regulation of P450s at post-transcriptional level. The half lives of P450 1A1 and 2B1/2 mRNA in glioma C6 cells are only 1/10 and 1/3 of that in liver. This may partly contribute to the low expression level of P450s in glial cells. The induction of P450s by BA or PB did not change their mRNA half lives, indicating the induction may be due to transcriptional regulation. In summary of this study, we believe the presence of the cytochrome P450 monooxygenase system in glial cells of the brain may be important in chemotherapy and carcinogenesis of brain tumors. ^
Resumo:
Mechanisms that allow pathogens to colonize the host are not the product of isolated genes, but instead emerge from the concerted operation of regulatory networks. Therefore, identifying components and the systemic behavior of networks is necessary to a better understanding of gene regulation and pathogenesis. To this end, I have developed systems biology approaches to study transcriptional and post-transcriptional gene regulation in bacteria, with an emphasis in the human pathogen Mycobacterium tuberculosis (Mtb). First, I developed a network response method to identify parts of the Mtb global transcriptional regulatory network utilized by the pathogen to counteract phagosomal stresses and survive within resting macrophages. As a result, the method unveiled transcriptional regulators and associated regulons utilized by Mtb to establish a successful infection of macrophages throughout the first 14 days of infection. Additionally, this network-based analysis identified the production of Fe-S proteins coupled to lipid metabolism through the alkane hydroxylase complex as a possible strategy employed by Mtb to survive in the host. Second, I developed a network inference method to infer the small non-coding RNA (sRNA) regulatory network in Mtb. The method identifies sRNA-mRNA interactions by integrating a priori knowledge of possible binding sites with structure-driven identification of binding sites. The reconstructed network was useful to predict functional roles for the multitude of sRNAs recently discovered in the pathogen, being that several sRNAs were postulated to be involved in virulence-related processes. Finally, I applied a combined experimental and computational approach to study post-transcriptional repression mediated by small non-coding RNAs in bacteria. Specifically, a probabilistic ranking methodology termed rank-conciliation was developed to infer sRNA-mRNA interactions based on multiple types of data. The method was shown to improve target prediction in Escherichia coli, and therefore is useful to prioritize candidate targets for experimental validation.
Resumo:
Most newly synthesized messenger RNAs possess a 5’ cap and a 3’ poly(A) tail. The process of poly(A) tail shortening, also termed deadenylation, is important for post-transcriptional gene regulation, because deadenylation not only leads to mRNA translational inhibition but also is the first step of major mRNA degradation. Translationally inhibited mRNAs can be stored and/or degraded in dynamic cytoplasmic foci termed mRNA processing bodies, or P bodies, which are conserved in eukaryotes. To shed new light on the mechanisms of P body formation and P body functions, I focused on the link between deadenylation factors and P bodies. I found that the two major deadenylation complexes, Pan3-Pan2 and Ccr4-Caf1, can both be enriched in P bodies. The deadenylase activity of the Ccr4-Caf1 complex is prerequisite for P body formation. Pan3, but not the deadenylase Pan2, is essential for P body formation. While the C-terminal domain of Pan3 is important for interaction with Pan2, Pan3 N-terminal domain is important for Pan3 to form cytoplasmic foci colocalizing with P bodies and to promote mRNA decay. Interestingly, Pan3 N-terminal domain may be phosphorylated to regulate Pan3 localization and functions. Aside from the functions of the two deadenylation complexes in P bodies, I also studied all reported human P body proteins as a whole using bioinformatics. This effort not only has generated a comprehensive picture of the functions of and interactions among human P body proteins, but also has predicted proteins that may regulate P body formation and/or functions. In summary, my study has established a direct link between mRNA deadenylation and P body formation and has also led to new hypotheses to guide future research on how P body dynamics are controlled.
Resumo:
Eukaryotic genomes exist within a dynamic structure named chromatin in which DNA is wrapped around an octamer of histones forming the nucleosome. Histones are modified by a range of posttranslational modifications including methylation, phosphorylation, and ubiquitination, which are integral to a range of DNA-templated processes including transcriptional regulation. A hallmark for transcriptional activity is methylation of histone H3 on lysine (K) 4 within active gene promoters. In S. cerevisiae, H3K4 methylation is mediated by Set1 within the COMPASS complex. Methylation requires prior ubiquitination of histone H2BK123 by the E2-E3 ligases Rad6 and Bre1, as well as the Paf1 transcriptional elongation complex. This regulatory pathway exemplifies cross-talk in trans between posttranslational modifications on distinct histone molecules. Set1 has an additional substrate in the kinetochore protein Dam1, which is methylated on K233. This methylation antagonizes phosphorylation of adjacent serines by the Ipl1 Aurora kinase. The discovery of a second Set1 substrate raised the question of how Set1 function is regulated at the kinetochore. I hypothesized that transcriptional regulatory factors essential for H3K4 methylation at gene promoters might also regulate Set1-mediated methylation of Dam1K233. Here I show that the regulatory factors essential for COMPASS activity at gene promoters is also indispensable for the methylation of Dam1K233. Deletion of members of the COMPASS complex leads to loss of Dam1K233 methylation. In addition, deletion of Rad6, Bre1, or members of the Paf1 complex abolishes Dam1 methylation. The role of Rad6 and Bre1 in Dam1 methylation is dependent on H2BK123 ubiquitination, as mutation of K123 within H2B results in complete loss of Dam1 methylation. Importantly, methylation of Dam1K233 is independent of transcription and occurs at the kinetochore. My results demonstrate that Set1-mediated methylation is regulated by a general pathway regardless of substrate that is composed of transcriptional regulatory factors functioning independently of transcription at the kinetochore. My data provide the first example of cross-talk in trans between modifications on a histone and a non-histone protein. Additionally, my results indicate that several factors previously thought to be required for Set1 function at gene promoters are more generally required for the catalytic activity of the COMPASS complex regardless of substrate or cellular process.
Resumo:
Factors involved in regulating tissue specific gene expression play a major role in cell differentiation. In order to further understand the differentiation events occurring during hematopoiesis, a myeloid specific gene was characterized, the expression pattern during hematopoiesis was analyzed, and the mechanisms governing its regulation were assessed. Previously, our laboratory isolated an anonymous cDNA clone, pD-D1, which displayed preferential expression in myeloid cells. From nucleotide sequencing of overlapping cDNA clones I determined that the D-D1 message encodes a hematopoietic proteoglycan core protein (HpPG). The expression pattern of the gene was assessed by in situ hybridization of bone marrow and peripheral blood samples. The gene was shown to be expressed, at variable levels, in all leukocytes analyzed, including cells from every stage of neutrophil development. In an attempt to ascertain the differentiation time point in which the HpPG gene is initially expressed, more immature populations of leukemic myeloblasts were assessed by northern blot analysis. Though the initial point of expression was not obtained, an up-regulatory event was discovered corresponding to a time point in which granule genesis occurs. This finding is consistent with prior observations of extensive packaging of proteoglycans into the secretory granules of granule producing hematopoietic cells. The HpPG gene was also found to be expressed at low levels in all stages of lymphocyte development analyzed, suggesting that the HpPG gene is initially expressed before the decision for myeloid-lymphoid differentiation. To assess the mechanism for the up-regulatory event, a K562 in vitro megakaryocytic differentiation system was used. Nuclear run-off analyses in this system demonstrated the up-regulation to be under transcriptional control. In addition, the HpPG gene was found to be down regulated during macrophage differentiation of HL60 cells and was also shown to be transcriptionally controlled. These results indicate that there are multiple points of transcriptional regulation of the HpPG gene during differentiation. Furthermore, the factors regulating the gene at these time points are likely to play an important role in the differentiation of granule producing cells and macrophages. ^
Resumo:
The Spec genes of the sea urchin Stronylocentrotus purpuratus serves as an excellent model for studying cell type-specific gene expression during early embryogenesis. The Spec1/Spec2 genes encode cytosolic calcium-binding proteins related to the calmodulin/troponin C/myosin light chain superfamily. Members of the Spec gene family are activated shortly after the sixth cleavage as the lineage-specific founder cells giving rise to aboral ectoderm are established, and the accumulation of the Spec mRNAs is limited exclusively to aboral ectoderm cell lineages. In this dissertation, the transcriptional regulation of the Spec genes was studied. Sequence comparisons of the Spec gene 5$\sp\prime$ flanking regions showed that a DNA block of approximately 800 bp from the 3$\sp\prime$ end of the first exon to the 5$\sp\prime$ end of a repetitive DNA element, termed RSR, was highly conserved. In Spec2a, the conserved region was a continuous stretch of DNA, but in Spec1 and Spec2c, DNA insertions interrupt the conserved sequence block and alter the relative placement of the RSR element and other 5$\sp\prime$ flanking DNA. Thus, drastic rearrangements have occurred within the putative control regions of the Spec genes. In vivo expression experiments using the sea urchin embryo gene-transfer system showed that while the 5$\sp\prime$ flanking regions of all three Spec genes conferred proper temporal activation to the reporter CAT gene, only the Spec2a 5$\sp\prime$ flanking region could restrict lacZ gene expression to aboral ectoderm cells. However, the Spec2a conserved region alone was not sufficient to confer proper spatial expression, suggesting that negative spatial elements are also associated with the proper activation of Spec2a. A major positive regulatory region, defined as the RSR enhancer, was identified between base pairs $-$631 and $-$443 on Spec2a. The RSR enhancer was essential for maximal activity and conferred preferential aboral ectoderm expression to a lacZ reporter gene. DNaseI footprinting and band-shift analysis of the RSR enhancer revealed multiple DNA-elements. One of the elements, an A/T-rich sequence called the A/T palindrome was studied in detail. This element binds a single 45-kDa nuclear protein, the A/T palindrome binding protein (A/TBP), whose DNA-binding specificity suggests a possible relationship with the bicoid-class homeodomain proteins. Mutated A/T palindromes are incapable of binding the 45-kDa protein and lower promoter activity by 8-fold. DNA-binding activity for A/TBP is low in unfertilized eggs, increases by the 16-cell stage and continues rising in blastulae. These data suggest that A/TBP plays a major role in the activation of the Spec2a gene in aboral ectoderm cells. ^
Resumo:
The poly-D-glutamic acid capsule of Bacillus anthracis is considered essential for lethal anthrax disease. Yet investigations of capsule function have been limited primarily to attenuated B. anthracis strains lacking certain genetic elements. In work presented in this thesis, I constructed and characterized a genetically complete (pXO1 + pXO2+) B. anthracis strain (UT500) and isogenic mutants deleted for two previously identified capsule gene regulators, atxA and acpA, and a newly-identified regulator, acpB. Results of transcriptional analysis and microscopy revealed that atxA controls expression of the first gene of the capsule biosynthesis operon, capB, via positive transcriptional regulation of acpA and acpB. acpA and acpB appear to be partial functional homologs. Deletion of either gene alone has little effect on capsule synthesis. However, a mutant deleted for both acpA and acpB is noncapsulated. Thus, in contrast to previously published models, my results suggest that atxA is the master regulator of cap gene expression in a genetically complete strain. A detailed transcriptional analysis of capB and the regulatory genes was performed to establish the effects of the regulators and CO2/bicarbonate on specific mRNAs of target genes. CO2/bicarbonate is a well-established signal for B. anthracis capsule synthesis in culture. Taqman RT-PCR results indicated that growth in the presence of elevated CO2 greatly increased expression of acpA, acpB and capB but not atxA. 5′ end mapping of capB and acpA revealed atxA-regulated and atxA-independent transcriptional start sites for both genes. All atxA-regulated start sites were also CO2-regulated. A single atxA-independent start site was identified 5 ′ of acpB. However, RT-PCR analysis indicated that capD and acpB are co-transcribed. Thus, it is likely that atxA-mediated control of acpB expression occurs via transcriptional activation of the atxA-regulated start sites of capB. Finally, I examined the contribution of the B. anthracis capsule to virulence. The virulence of the parent strain, mutants deleted for the capsule biosynthesis genes ( capBCAD), and mutants missing the capsule regulator genes was compared using a mouse model for inhalation anthrax. The data indicate that in this model, capsule is essential for virulence. Mice survived infection with the noncapsulated capBCAD and acpA acpB mutants. These mutants initiated germination in the lung, but did not disseminate to the spleen. The acpA mutant had an LD50 value similar to the parent strain and was able to disseminate and cause lethal infection. Unexpectedly, the acpB mutant had a higher LD 50 and a reduced ability to disseminate. During in vitro culture, the acpB single mutant produces capsule and toxin similar to the parent strain. It is likely that acpB regulates the expression of downstream genes that contribute to the virulence of B. anthracis. ^
Resumo:
The baker's yeast, Saccharomyces cerevisiae responds to the cytotoxic effects of elevated temperature (37-42°C) by activating transcription of ∼150 genes, termed heat shock genes, collectively required to compensate for the abundance of misfolded and aggregated proteins and various physiological modifications necessary for the cell to survive and grow at heat shock temperatures. An intriguing facet of the yeast heat shock response is the remarkable similarity it shares with the global remodeling that occurs in mammalian cells in response to numerous pathophysiological conditions including cancer and cardiovascular disease and thus provides an ideal model system. I have therefore investigated several novel features of stress signaling, transcriptional regulation, and physiology. Initial work focused on the characterization of SYM1, a novel heat shock gene in yeast which was demonstrated to be required for growth on the nonfermentable carbon source ethanol at elevated temperature, and to be the functional ortholog of the mammalian kidney disease gene, Mpv17. Additional work addressed the role of two proteins, the Akt-related kinase, Sch9, and Sse1, the yeast Hsp110 protein chaperone homolog, in signaling by protein kinase A, establishing Sse1 as a critical negative regulator of this pathway. Furthermore, I have demonstrated a role for Sse1 in biogenesis and stability of the stress-response transcription factor, Msn2; a finding that has been extended to include a select subset of additional high molecular weight proteins, suggesting a more global role for this chaperone in stabilizing the cellular proteome. The final emphasis of my doctoral work has included the finding that celastrol, a compound isolated from the plant family Celasfraceae, a component of traditional Chinese herbal medicine, can activate heat shock transcription factor (Hsf1) in yeast and mammalian cells through an oxidative stress mechanism. Celastrol treatment simultaneously activates both heat shock and oxidative stress response pathways, resulting in increased cytoprotection. ^
Resumo:
HER-2/neu is a receptor tyrosine kinase highly homologous with epidermal growth factor receptor. Overexpression and/or amplification of HER-2/neu has been implicated in the genesis of a number of human cancers, especially breast and ovarian cancers. Transcriptional upregulation has been shown to contribute significantly to the overexpression of this gene. Studies on the transcriptional regulation of HER-2/neu gene are important for understanding the mechanism of cell transformation and developing the therapeutic strategies to block HER-2/neu-mediated cancers. PEA3 is a DNA binding transcriptional factor and its consensus sequence exists on the HER-2/neu promoter. To examine the role of PEA3 in HER-2/neu expression and cell transformation, we transfected PEA3 into the human breast and ovarian cancer cells that overexpress HER-2/neu and showed that PEA3 dramatically represses HER-2/neu transcription. PEA3 suppresses the oncogenic neu-mediated transformation in mouse fibroblast NIH 3T3 cells. Expression of PEA3 selectively blocks the growth of human cancer cells that overexpress HER-2/neu and inhibits their colony formation. It does not occur in the cancer cells expressing basal level of HER-2/neu. Further studies in the orthotopic ovarian cancer model demonstrated that expression of PEA3 preferentially inhibits growth and tumor development of human cancer cells that overexpress HER-2/neu, the tumor-bearing mice survived significantly longer if treated by injection of the PEA3-liposome complex intraperitoneally. Immunoblotting and immunohistochemical analysis of the tumor tissues indicated that PEA3 mediates the tumor suppression activity through targeting HER-2/neu-p185. Thus, PEA3 is a negative regulator of HER-2/neu gene expression and functions as a tumor suppressor gene in the HER-2/neu-overexpressing human cancer cells.^ The molecular mechanisms of PEA3 mediated transcriptional repression were investigated. PEA3 binds specifically at the PEA3 site on HER-2/neu promoter and this promoter-binding is required for the PEA3 mediated transcriptional repression. Mutation of the PEA3 binding site on HER-2/neu promoter causes decreased transcriptional activity, indicating that the PEA3 binding site is an enhancer-like element in the HER-2/neu-overexpressing cells. We therefore hypothesized that in the HER-2/neu-overexpressing cells, PEA3 competes with a transactivator for binding to the PEA3 site, preventing the putative factor from activating the transcription of HER-2/neu. This hypothesis was supported by the data which demonstrate that PEA3 competes with another nuclear protein for binding to the HER-2/neu promoter in vitro, and expression of a truncated protein which encodes the DNA binding domain of PEA3 is sufficient to repress HER-2/neu transcription in the HER-2/neu-overexpressing human cancer cells. ^
Resumo:
Studies on the transcriptional regulation of serum amyloid A1 (SAA1) gene, a liver specific acute-phase gene, identified a regulatory element in its promoter that functioned to repress (SAA1) gene transcription in nonliver cells. This silencer element interacts with a nuclear protein that is detectable in HeLa cells, fibroblasts and placental tissues but not in liver or liver-derived cells. As the expression pattern of this repressor is consistent with its potential regulatory role in repressing SAA1 expression, and that many other liver gene promoters also contain this repressor binding site, we sought to investigate whether this repressor may have a broader functional role in repressing liver genes. ^ We have utilized protein purification, cell culture, transient and stable gene transfection, and molecular biology approaches to identify this protein and investigate its possible function in the regulation of (SAA1) and other liver genes. Analyses of amino acid sequence of the purified nuclear protein, and western blot and gel shift studies identified the repressor as transcription factor AP-2 or AP-2-like protein. Using transient transfection of DNA into cultured cells, we demonstrate that AP-2 can indeed function as a repressor to inhibit transcription of SAA1 gene promoter. This conclusion is supported by the following experimental results: (1) overexpression of AP-2 in hepatoma cells inhibits conditioned medium (CM)-induced expression of SAA1 promoter; (2) binding of AP-2 to the SAA1 promoter is required for AP-2 repression function; (3) one mechanism by which AP-2 inhibits SAA1 may be by antagonizing the activation function of the strong transactivator NFκB; (4) mutation of AP-2 binding sites results in derepression of SAM promoter in HeLa cells; and (5) inhibition of endogenous AP-2 activity by a dominant-negative mutant abolishes AP-2's inhibitory effect on SAM promoter in HeLa cells. In addition to the SAM promoter, AP-2 also can bind to the promoter regions of six other liver genes tested, suggesting that it may have a broad functional role in restricting the expression of many liver genes in nonliver cells. Consistent with this notion, ectopic expression of AP-2 also represses CM-mediated activation of human third component of complement 3 promoter. Finally, in AP-2-expressing stable hepatoma cell lines, AP-2 inhibits not only the expression of endogenous SAA, but also the expression of several other endogenous liver genes including albumin, α-fetoprotein. ^ Our findings that AP-2 has the ability to repress the expression of liver genes in nonliver cells opens a new avenue of investigation of negative regulation of gene transcription, and should improve our understanding of tissue-specific expression of liver genes. In summary, our data provide evidence suggesting a novel role of AP-2 as a repressor, inhibiting the expression of liver genes in nonliver cells. Thus, the tissue-specific expression of AP-2 may constitute an important mechanism contributing to the liver-specific expression of liver genes. ^
Resumo:
A model of Drosophila circadian rhythm generation was developed to represent feedback loops based on transcriptional regulation of per, Clk (dclock), Pdp-1, and vri (vrille). The model postulates that histone acetylation kinetics make transcriptional activation a nonlinear function of [CLK]. Such a nonlinearity is essential to simulate robust circadian oscillations of transcription in our model and in previous models. Simulations suggest that two positive feedback loops involving Clk are not essential for oscillations, because oscillations of [PER] were preserved when Clk, vri, or Pdp-1 expression was fixed. However, eliminating positive feedback by fixing vri expression altered the oscillation period. Eliminating the negative feedback loop in which PER represses per expression abolished oscillations. Simulations of per or Clk null mutations, of per overexpression, and of vri, Clk, or Pdp-1 heterozygous null mutations altered model behavior in ways similar to experimental data. The model simulated a photic phase-response curve resembling experimental curves, and oscillations entrained to simulated light-dark cycles. Temperature compensation of oscillation period could be simulated if temperature elevation slowed PER nuclear entry or PER phosphorylation. The model makes experimental predictions, some of which could be tested in transgenic Drosophila.
Resumo:
Although several detailed models of molecular processes essential for circadian oscillations have been developed, their complexity makes intuitive understanding of the oscillation mechanism difficult. The goal of the present study was to reduce a previously developed, detailed model to a minimal representation of the transcriptional regulation essential for circadian rhythmicity in Drosophila. The reduced model contains only two differential equations, each with time delays. A negative feedback loop is included, in which PER protein represses per transcription by binding the dCLOCK transcription factor. A positive feedback loop is also included, in which dCLOCK indirectly enhances its own formation. The model simulated circadian oscillations, light entrainment, and a phase-response curve with qualitative similarities to experiment. Time delays were found to be essential for simulation of circadian oscillations with this model. To examine the robustness of the simplified model to fluctuations in molecule numbers, a stochastic variant was constructed. Robust circadian oscillations and entrainment to light pulses were simulated with fewer than 80 molecules of each gene product present on average. Circadian oscillations persisted when the positive feedback loop was removed. Moreover, elimination of positive feedback did not decrease the robustness of oscillations to stochastic fluctuations or to variations in parameter values. Such reduced models can aid understanding of the oscillation mechanisms in Drosophila and in other organisms in which feedback regulation of transcription may play an important role.