39 resultados para pacs: human aspacts of it
Resumo:
POLN is a nuclear A-family DNA polymerase encoded in vertebrate genomes. POLN has unusual fidelity and DNA lesion bypass properties, including strong strand displacement activity, low fidelity favoring incorporation of T for template G and accurate translesion synthesis past a 5S-thymine glycol (5S-Tg). We searched for conserved features of the polymerase domain that distinguish it from prokaryotic pol I-type DNA polymerases. A Lys residue (679 in human POLN) of particular interest was identified in the conserved 'O-helix' of motif 4 in the fingers sub-domain. The corresponding residue is one of the most important for controlling fidelity of prokaryotic pol I and is a nonpolar Ala or Thr in those enzymes. Kinetic measurements show that K679A or K679T POLN mutant DNA polymerases have full activity on nondamaged templates, but poorly incorporate T opposite template G and do not bypass 5S-Tg efficiently. We also found that a conserved Tyr residue in the same motif not only affects sensitivity to dideoxynucleotides, but also greatly influences enzyme activity, fidelity and bypass. Protein sequence alignment reveals that POLN has three specific insertions in the DNA polymerase domain. The results demonstrate that residues have been strictly retained during evolution that confer unique bypass and fidelity properties on POLN.
Resumo:
In the last few years, our laboratory has studied the regulatory mechanisms of proliferation and differentiation in epidermal tissues. Our results showed differences in the roles of cyclin dependent-kinases 4 and 6, and the three D-type cyclins, during normal epidermal proliferation and neoplastic development. Thus, to elucidate the role of the different cell cycle regulators, we developed transgenic mice that overexpress CDK4 (K5-CDK4), or their cognate D-type cyclins, in epithelial tissues. The most severe phenotype was observed in K5-CDK4 animals that developed dermal fibrosis, epidermal hyperplasia and hypertrophy. Forced expression of CDK4 in the epidermal basal cell layer increased the malignant conversion of skin papillomas to squamous cell carcinomas (SCC). Contrastingly, lack of CDK4 completely inhibited tumor development, suggesting that CDK4 is required in this process. Biochemical studies demonstrated that p21 Cip1 and p27Kip1 inhibitors are sequestered by CDK4 resulting in indirect activation of Cyclin E/CDK2, implicating the non-catalytic activity of CDK4 in deregulation of the cell cycle progression. ^ It has been proposed that the proliferative and oncogenic role of Myc is linked to its ability to induce the transcription of CDK4, cyclin D1, and cyclin D2 in vitro. Deregulation of Myc oncogene has been found in several human cancers. Also it has been demonstrated that CDK4 has the ability to functionally inactivate the product of the tumor suppressor gene Rb, providing a link between Myc and the CDK4/cyclin D1/pRb/p16 pathway in some malignant tumors. Here, we sought to determine the role of CDK4 as a mediator of Myc activities by developing a Myc overexpressing mouse nullizygous for CDK4. We demonstrated that lack of CDK4 results in reduced keratinocyte proliferation and epidermal thickness in K5-Myc/CDK4-null mice. In addition, complete reversion of tumor development was observed. All together, this work demonstrates that CDK4 acts as an oncogene independent of the D-type cyclin levels and it is an important mediator of the tumorigenesis induced by Myc. In addition, we showed that the sequestering activity of CDK4 is critical for the development of epidermal hyperplasia during normal proliferation, malignant progression from papillomas to squamous cell carcinomas, and tumorigenesis induced by Myc. ^
Resumo:
The built environment is part of the physical environment made by people and for people. Because the built environment is such a ubiquitous component of the environment, it acts as an important pathway in determining health outcomes. Zoning, a type of urban planning policy, is one of the most important mechanisms connecting the built environment to public health. This policy analysis research paper explores how zoning regulations in Austin, Texas promote or prohibit the development of a healthy built environment. A systematic literature review was obtained from Active Living Research, which contained literature published about the relationships between the built environment, physical activity, and health. The results of these studies identified the following four components of the built environment that were associated to health: access to recreational facilities, sprawl and residential density, land use mix, and sidewalks and their walkability. A hierarchy analysis was then performed to demonstrate the association between these aspects of the built environment and health outcomes such as obesity, cardiovascular disease, and general health. Once these associations had been established, the components of the built environment were adapted into the evaluation criteria used to conduct a public health analysis of Austin's zoning ordinance. A total of eighty-eight regulations were identified to be related to these components and their varying associations to human health. Eight regulations were projected to have a negative association to health, three would have both a positive and negative association simultaneously, and nine were indeterminable with the information obtained through the literature review. The remaining sixty-eight regulations were projected to be associated in a beneficial manner to human health. Therefore, it was concluded that Austin's zoning ordinance would have an overwhelmingly positive impact on the public's health based on identified associations between the built environment and health outcomes.^
Resumo:
Increased dependence on aerobic glycolysis for energy (ATP) supply has been observed in various human cancer cells. It is plausible to exploit this metabolic alteration for therapeutic benefits by inhibiting glycolysis to preferentially abolish cancer energy metabolism and kill the malignant cells. 3-Bromopyruvate has been shown to be a potent inhibitor of glycolysis capable of inducing severe ATP reduction and cell death in various cancer cell lines, especially cancer cells with mitochondrial defects or under hypoxic conditions. However, the detailed mechanisms of this novel anticancer agent still remain unclear. My study demonstrated that 3-Bromopyruvate caused a covalent modification of hexokinase II, a key glycolytic enzyme, and disrupted its association with mitochondria. This led to mitochondrial permeability transition and a substantial release of apoptosis-inducing faction (AIF) prior to cytochrome c release. Dissociation of HK II from mitochondria using a cell permeable specific peptide also induced the release of AIF and cytochrome c, and caused substantial cell death. HK II-targeted peptide did not cause significant change in mitochondria respiration and glycolysis activity, suggesting that dissociation of this molecule from mitochondria alone can also cause cell death, and that this may be a novel mechanism by which 3-Bromopyruvate exerts its potent cytotoxic action, in addition to its inhibition of the enzyme activity. Another significant new discovery was that 3-Bromopyruvate induced rapid reduction of protein ubiquitination in vivo, which occurred within several hours of drug incubation and before ATP reduction and cell death. Further mechanistic studies showed that this was due to the inhibition the ubiquitin activating enzyme E1 and the conjugating enzyme E2. Knocking down ubiquitin protein expression by siRNA did not suppress mitochondria respiration and glycolysis, but caused significant cell death. Taken together, this study demonstrated that induction of HK II dissociation from mitochondria and inhibition of glycolysis are two newly discovered mechanisms that contribute to the potent anticancer activity of 3-Bromopyruvate, and identified this compound as a valuable chemical tool for research in protein ubiquitination. ^
Resumo:
Recent outbreaks of dengue fever (DF) along the United States/Mexico border, coupled with the high number of reported cases in Mexico suggest that there is the possibility for DF emergence in Houston, Texas1,2. To determine the presence of DF, populations of Aedes aegypti and Aedes albopictus were identified and tested for dengue virus. Maps were created to identify "hot spots" (Figure 1) based on historical data on Ae. aegypti and Ae. albopictus, demographic information, and locations of human cases of dengue fever. BG Sentinel Traps®, in conjunction with BG Lure® attractant, octanol and dry ice, were used to collect mosquitoes, which were then tested for presence of dengue virus using ELISA techniques. All samples tested were negative for dengue virus (DV). Survival of DV ultimately comes down to whether or not it will be vectored by a mosquito to a susceptible human host. The presence of infected humans and contact with the mosquito vectors are two critical factors necessary in the establishment of DF. Historical records indicate the presence of Ae. aegypti and Ae. albopictus in Harris County, which would support localized dengue transmission if infected individuals are present.^ (1) Brunkard JM, Robles-Lopez JL, Ramirez J, Cifuentes E, Rothenberg SJ, Hunsperger EA, Moore CG, Brussolo RM, Villarreal NA, Haddad BM, 2007. Dengue fever seroprevalence and risk factors, Texas-Mexico border, 2004. Emerg Infect Dis 13: 1477-1483. (2) Ramos MM, Mohammed H, Zielinski-Gutierrez E, Hayden MH, Lopez JL, Fournier M, Trujillo AR, Burton R, Brunkard JM, Anaya-Lopez L, Banicki AA, Morales PK, Smith B, Munoz JL, Waterman SH, 2008. Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico Border: results of a household-based seroepidemiologic survey, December 2005. Am J Trop Med Hyg 78: 364-369.^
Resumo:
Background. First synthesized in 1874, dichlorodiphenyltrichloroethane (DDT) was not used until the second half of World War II after its insecticidal properties were discovered in 1939. For decades DDT has been used globally with the intent of eradicating malaria. This began in 1955 when the eighth World Health Assembly launched a global campaign selecting DDT as the chemical of choice for the eradication of malaria. The United States banned DDT use in 1972 partially due to the publication of “Silent Spring” by Rachel Carson in 1962 which suggested that DDT was harmful to the environment, wildlife and is a carcinogen. ^ Objectives. To critically review the literature on DDT, and evaluate its importance in malaria prevention and control. Methods: The design of this systematic literature review is a narrative summary and evaluation of the papers reviewed. The data came from searches using PubMed and MEDLINE which are free and publicly available databases. Inclusive criteria that were considered during the search are English language peer reviewed journal articles published in the last 20 years. The keywords were: “insecticidal and agricultural use of DDT”, “human impact of malaria”, “economic impact of malaria”, “benefits of DDT”, “effects of DDT”, “importance of malaria control”, and alternatives to DDT for malaria control. ^ Results. Malaria continues to be one of the most common infectious diseases and creates a tremendous global public health problem. WHO recommends DDT for malaria vector control because compared to other pesticides, it is the most persistent in indoor spraying. ^ Conclusion. Indoor spraying of DDT in malaria endemic areas may cause increased exposure of the chemical to humans; however I conclude that the overall benefits outweigh the risks because more lives are saved due to fewer infections with malaria.^
Resumo:
Background and Objective. Ever since the human development index was published in 1990 by the United Nations Development Programme (UNDP), many researchers started searching and corporative studying for more effective methods to measure the human development. Published in 1999, Lai’s “Temporal analysis of human development indicators: principal component approach” provided a valuable statistical way on human developmental analysis. This study presented in the thesis is the extension of Lai’s 1999 research. ^ Methods. I used the weighted principal component method on the human development indicators to measure and analyze the progress of human development in about 180 countries around the world from the year 1999 to 2010. The association of the main principal component obtained from the study and the human development index reported by the UNDP was estimated by the Spearman’s rank correlation coefficient. The main principal component was then further applied to quantify the temporal changes of the human development of selected countries by the proposed Z-test. ^ Results. The weighted means of all three human development indicators, health, knowledge, and standard of living, were increased from 1999 to 2010. The weighted standard deviation for GDP per capita was also increased across years indicated the rising inequality of standard of living among countries. The ranking of low development countries by the main principal component (MPC) is very similar to that by the human development index (HDI). Considerable discrepancy between MPC and HDI ranking was found among high development countries with high GDP per capita shifted to higher ranks. The Spearman’s rank correlation coefficient between the main principal component and the human development index were all around 0.99. All the above results were very close to outcomes in Lai’s 1999 report. The Z test result on temporal analysis of main principal components from 1999 to 2010 on Qatar was statistically significant, but not on other selected countries, such as Brazil, Russia, India, China, and U.S.A.^ Conclusion. To synthesize the multi-dimensional measurement of human development into a single index, the weighted principal component method provides a good model by using the statistical tool on a comprehensive ranking and measurement. Since the weighted main principle component index is more objective because of using population of nations as weight, more effective when the analysis is across time and space, and more flexible when the countries reported to the system has been changed year after year. Thus, in conclusion, the index generated by using weighted main principle component has some advantage over the human development index created in UNDP reports.^
Resumo:
The purpose of this work was to examine the possible mechanisms for the regulation of cytochrome c gene expression in response to increased contractile activity in rat skeletal muscle. The working hypothesis was that increased contractile activity enhances cytochrome c gene expression through a cis-element. A 110% increase in cytochrome c mRNA concentration was observed in tibialis anterior (TA) muscle after 9 days of chronic stimulation. Similar difference (120%) exists between soleus (SO) muscle of higher contractile activity and white vastus lateralis (WV) muscle of lower contractile activity. These results suggest that the endogenous cytochrome c gene expression is regulated by contractile activity. Cytochrome c-reporter genes were injected into skeletal muscles to identify the cis-element that is responsible for the regulation. Although the data was inconclusive, part of it suggested the importance of the 3$\sp\prime$-untranslated region (3$\sp\prime$-UTR) in mediating the response to increased contractile activity.^ RNA gel mobility shift (GMSA) and ultraviolet (UV) cross-linking assays revealed specific RNA-protein interaction in a 50-nucleotide region of the 3$\sp\prime$-UTR in unstimulated TA muscle. Computer analysis predicted a stem-loop structure of 17 nucleotides, which provides a structural basis for RNA-protein interaction. These 17 nucleotides are 100% conserved among rat, mouse and human cytochrome c genes and their 13 pseudogenes, suggesting a functional role for this region. The RNA-protein interaction was significantly less in highly active SO muscle than in inactive WV muscle and was dramatically decreased in stimulated TA muscle due to a protein inhibitor(s) associated with ribosome. It is possible that cytochrome c mRNAs undergoing translation are subject to a compartmentalized regulatory influence.^ The conclusion from these results is that increases in contractile activity induce or activate a protein inhibitor(s) associated with ribosome in rat skeletal muscle. The inhibitor decreases RNA-protein interaction in the 3$\sp\prime$-UTR of cytochrome c mRNA, which may result in increased mRNA stability and/or translation. ^
Resumo:
p53 is required for the maintenance of the genomic stability of cells. Mutations in the p53 tumor-suppressor gene occur in more than 50% of human cancers of diverse types. In addition, 70% of families with Li-Fraumeni syndrome have a germline mutation in p53, predisposing these individuals to multiple forms of cancer. In response to DNA damage, p53 becomes stabilized and activated. However the exact mechanism by which DNA damage signals the stabilization and activation of p53 still remains elusive. The biochemical activity of p53 that is required for tumor suppression, and presumably the cellular response to DNA damage, involves the ability of the protein to bind to specific DNA sequences and to function as a transcription factor. For the downstream targets, p53 transactivates many genes involved in growth arrest, apoptosis and DNA repair such as p21, Bax and GADD45, respectively. An open question in the field is how cells can determine the downstream effects of p53. ^ We hypothesize that, through its associated proteins, p53 can differentially transactivate its target genes, which determine its downstream effect. Additionally, p53 interacting proteins may be involved in signaling for the stabilization and activation of p53. Therefore, a key aspect to understanding p53 function is the identification and analysis of proteins that interact with it. We have employed the Sos recruitment system (SRS), a cytoplasmic yeast two-hybrid screen to identify p53 interacting proteins. The SRS is based on the ability of Sos to activate Ras when it becomes localized to the plasma membrane. The system takes advantage of an S. cerevisiae strain, cdc25-2 temperature sensitive mutant, harboring a mutation in Sos. In this strain, fusion proteins containing a truncated Sos will only localize to the membrane by protein-protein interaction, which allows growth at non-permissive temperature. This system allows the use of intact transcriptional activators such as p53. ^ To date, using a modified SRS library screen to identify p53 interacting proteins, I have identified p53 (known to interact with itself) and a novel p53-interacting protein (PIP). PIP is a specific p53 interacting protein in the SRS. The interaction of p53 and PIP was further confirmed by performing in vitro and in vivo binding assays. In the in vivo binding study, the interaction can only be detected in the presence of ionizing radiation suggesting that this interaction might be involved in DNA-damage induced p53-signalling pathway. After screening cDNA and genomic libraries, a full-length PIP-cDNA clone ( ∼ 3kb) was obtained which encodes a protein of 429 amino acids with calculated molecular weight of 46 kDa. The results of genebank search indicated that the PIP is an unidentified gene and contains a conserved ring-finger domain, which is present in a diverse family of regulatory proteins involved in different aspects of cellular function. Northern blot analysis revealed that the size of its messenge is approximately 3 kb preferentially expressed in brain, heart, liver and kidney. The PIP protein is mainly located in the cytoplasm as determined by the cellular localization of a green fluorescence fusion protein. Preliminary functional analysis revealed that PIP downregulated the transactivation activity of p53 on both p21 and mdm2 promoters. Thus, PIP may be a novel negative regulator of p53 subsequent to DNA damage. ^