32 resultados para maternal directiveness and developmental delays
Resumo:
BACKGROUND: Parity is a risk factor in neonatal morbidity and mortality. This dissertation examined the association between first births and selected birth defects. The first aim was to assess the risk of 66 birth defects among first births and third or greater births. The second aim was to determine if maternal race, maternal age, infant sex or infant birth weight modify the association between first births and selected birth defects. METHODS: The Texas Birth Defects Registry provided data for 1999-2009. For the first aim, odds ratios were calculated for each birth defect. For the second aim, analysis was restricted to the ten birth defects significantly associated with first births. Stratified analyses were conducted and interaction terms were added to logistic regression models to assess whether differences in the odds ratios for the effect of first birth were statistically significant across strata. RESULTS: Findings for the first aim showed that first births had significantly increased odds of having an infant with 24 of the 66 birth defects. Third or greater births had significantly increased odds of having four of the 66 birth defects. For the second aim, a number of significant effect modifiers were observed. For patent ductus arteriosis, obstructive urinary defects and gastroschisis, the effect of first births was significantly modified by black or U.S.-born Hispanic mothers. The effect of first birth was also significantly modified among mothers ≥30 years for mitral valve insufficiency, atrial septal defect and congenital hip dislocation. The effect of first births was significantly modified among infants with low birth weight for hypospadias, congenital hip dislocation and gastroschisis. CONCLUSIONS: First births were associated with an elevated risk of 24 categories of birth defects. For some of the birth defects studied, the effect of first birth is modified by maternal age, maternal race and low birth weight. Knowledge of the increased risk for birth defects among women having their first birth allows physicians and midwives to provide better patient care and spur further research into the etiology of associated birth defects. This knowledge may bring about interventions prior to conception in populations most likely to conceive.^
Resumo:
Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesion, catenins have more recently been indicated to participate in cell and developmental signaling pathways. $\beta$-catenin, for example, associates directly with receptor tyrosine kinases and transcription factors such as LEF-1/TCF, and tranduces developmental signals within the Wnt pathway. $\beta$-catenin also appear to a role in regulating cell proliferation via its interaction with the tumor supressor protein APC. I have employed the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to $\beta$-catenin's central Armadillo-repeat domain. The $\beta$-catenin-fascin interaction exists in cell lines as well as in animal brain tissues as revealed by immunoprecipitation analysis, and substantiated in vitro with purified proteins. Fascin additionally binds to plakoglobin, which contains a more divergent Armadillo-repeat domain. Fascin and E-cadherin utilize a similar binding-site within $\beta$-catenin, such that they form mutually exclusive complexes with $\beta$-catenin. Fascin and $\beta$-catenin co-localize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. Total immunoprecipitable b-catein has several isoforms, only the hyperphosphorylated isoform 1 associated with fascin. An increased $\beta$-catenin-fascin interaction was observed in HGF stimulated cells, and in Xenopus embryos injected with src kinase RNAs. The increased $\beta$-catenin association with fascin is correlated with increased levels of $\beta$-catenin phosphorylation. $\beta$-catenin, but not fascin, can be readily phosphorylated on tyrosine in vivo following src injection of embryos, or in vitro following v-src addition to purified protein components. These observations suggest a role of $\beta$-catenin phosphorylation in regulating its interaction with fascin, and src kinase may be an important regulator of the $\beta$-catenin-fascin association in vivo. The $\beta$-catenin-fascin interaction represents a novel catenin complex, that may conceivably regulate actin cytoskeletal structures, cell adhesion, and cellular motility, perhaps in a coordinate manner with its functions in cadherin and APC complexes. ^