51 resultados para human breast cancer BCap-37 cells
Resumo:
Liposomes, also known as nontoxic, biodegradable, and non-immunogenic therapeutic delivery vehicles, have been proposed as a carrier for drugs and antitumor agents in cancer chemotherapy. Echogenic liposomes (ELIP) have the potential to entrap air or bioactive gas to enhance acoustic reflectivity in ultrasound and are used as a contrast agent. The innovative part of this study is based on a novel concept to encapsulate nitric oxide (NO) gas into ELIP, deliver it to breast cancer cells, and control its release via direct ultrasound exposure. Studies on the effect of NO in tumor biology have shown that a high levels of NO (> 300 nM) leads to cytostasis or apoptosis by decreasing the translation of several cell cycle proteins and stimulating cancer cell death by activating the p53 pathway. The central hypothesis is that NO gas can be packaged and delivered through a delivery methodology to breast cancer cells to facilitate tumor regression with minimal systemic toxicity. The primary goal of this thesis is to develop an echogenic liposomal solution that has the ability to encapsulate NO, to release NO locally upon ultrasound exposure, and to induce breast cancer cell death. NO-containing echogenic liposomes (NO-ELIP) were prepared by the freezing-under-pressure method previously developed in our laboratory. It was necessary to evaluate stability of NO-ELIP and release of NO from NO-ELIP by measuring echogenicity using intravascular ultrasound images. Breast cancer cell lines, MDA-MB-231 and MDA-MB-468, were selected to investigate the cytotoxic effects of NO liberated from NO-ELIP and their response to NO concentration. Ultrasound-triggered NO release from NO-ELIP using ultrasound activation was studied. It was demonstrated that NO-ELIP remained stable for 5 hours in bovine serum albumin. Delivery of NO using NO-ELIP induced cytotoxicity and programmed cell death of MDA-MB-231 and MDA-MB-468 after 5 hours of incubation. Enhancement of the NO-ELIP effect for therapeutic application was observed with ultrasound activation. This work demonstrates that NO-ELIP can incorporate and deliver NO to breast cancer cells providing increased NO stability and ultrasound-controlled NO release. Improved therapeutic effect with the use of NO-ELIP is expected to be found for breast cancer treatment.
Resumo:
The mechanism of tumorigenesis in the immortalized human pancreatic cell lines: cell culture models of human pancreatic cancer Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer in the world. The most common genetic lesions identified in PDAC include activation of K-ras (90%) and Her2 (70%), loss of p16 (95%) and p14 (40%), inactivation p53 (50-75%) and Smad4 (55%). However, the role of these signature gene alterations in PDAC is still not well understood, especially, how these genetic lesions individually or in combination contribute mechanistically to human pancreatic oncogenesis is still elusive. Moreover, a cell culture transformation model with sequential accumulation of signature genetic alterations in human pancreatic ductal cells that resembles the multiple-step human pancreatic carcinogenesis is still not established. In the present study, through the stepwise introduction of the signature genetic alterations in PDAC into the HPV16-E6E7 immortalized human pancreatic duct epithelial (HPDE) cell line and the hTERT immortalized human pancreatic ductal HPNE cell line, we developed the novel experimental cell culture transformation models with the most frequent gene alterations in PDAC and further dissected the molecular mechanism of transformation. We demonstrated that the combination of activation of K-ras and Her2, inactivation of p16/p14 and Smad4, or K-ras mutation plus p16 inactivation, was sufficient for the tumorigenic transformation of HPDE or HPNE cells respectively. We found that these transformed cells exhibited enhanced cell proliferation, anchorage-independent growth in soft agar, and grew tumors with PDAC histopathological features in orthotopic mouse model. Molecular analysis showed that the activation of K-ras and Her2 downstream effector pathways –MAPK, RalA, FAK, together with upregulation of cyclins and c-myc were involved in the malignant transformation. We discovered that MDM2, BMP7 and Bmi-1 were overexpressed in the tumorigenic HPDE cells, and that Smad4 played important roles in regulation of BMP7 and Bmi-1 gene expression and the tumorigenic transformation of HPDE cells. IPA signaling pathway analysis of microarray data revealed that abnormal signaling pathways are involved in transformation. This study is the first complete transformation model of human pancreatic ductal cells with the most common gene alterations in PDAC. Altogether, these novel transformation models more closely recapitulate the human pancreatic carcinogenesis from the cell origin, gene lesion, and activation of specific signaling pathway and histopathological features.
Resumo:
Breast cancer is the most common malignancy among women in the world. Its 5-year survival rate ranges from 23.4% in patients with stage IV to 98% in stage I disease, highlighting the importance of early detection and diagnosis. 18F-2-Fluoro-2-deoxy-glucose (18F-FDG), using positron emission tomography (PET), is the most common functional imaging tool for breast cancer diagnosis currently. Unfortunately, 18F-FDG-PET has several limitations such as poorly differentiating tumor tissues from inflammatory and normal brain tissues. Therefore, 18F-labeled amino acid-based radiotracers have been reported as an alternative, which is based on the fact that tumor cells uptake and consume more amino acids to sustain their uncontrolled growth. Among those radiotracers, 18F-labeled tyrosine and its derivatives have shown high tumor uptake and great ability to differentiate tumor tissue from inflammatory sites in brain tumors and squamous cell carcinoma. They enter the tumor cells via L-type amino acid transporters (LAT), which were reported to be highly expressed in many cancer cell lines and correlate positively with tumor growth. Nevertheless, the low radiosynthesis yield and demand of an on-site cyclotron limit the use of 18F-labeled tyrosine analogues. In this study, four Technetium-99m (99mTc) labeled tyrosine/ AMT (α-methyl tyrosine)-based radiotracers were successfully synthesized and evaluated for their potentials in breast cancer imaging. In order to radiolabel tyrosine and AMT, the chelators N,N’-ethylene-di-L-cysteine (EC) and 1,4,8,11-tetra-azacyclotetradecane (N4 cyclam) were selected to coordinate 99mTc. These chelators have been reported to provide stable chelation ability with 99mTc. By using the chelator technology, the same target ligand could be labeled with different radioisotopes for various imaging modalities for tumor diagnosis, or for internal radionuclide therapy in future. Based on the in vitro and in vivo evaluation using the rat mammary tumor models, 99mTc-EC-AMT is considered as the most suitable radiotracer for breast cancer imaging overall, however, 99mTc-EC-Tyrosine will be more preferred for differential diagnosis of tumor from inflammation.
Resumo:
Background and purpose. Sialyl-Tn(STn) represents an aberrantly glycosylated mucin epitope which is expressed in breast cancer and other adenocarcinomas and is an important target for the development of novel immunotherapeutic approaches. It is a marker of adverse prognosis in colon and ovarian cancer, but information about its prognostic impact in breast cancer is limited. The primary aim of the present study was to investigate the influence of STn expression on outcome of invasive breast cancer in 207 women who received anthracyline-containing adjuvant chemotherapy in a prospective clinical trial.^ Methods. Expression of STn was determined by an immunohistochemical procedure using the B72.3 monoclonal antibody. The extent of staining was determined by two observers using a 0 through 4 point scale, with 0 representing $<$5% of cells staining; 1: 5-25%; 2: 26-50%; 3: 51-75%; and 4: $>$75%. Intraobserver and interobserver agreement was.78-.92 (kappa). Kaplan-Meier and Cox proportional regression survival analyses were used to compare STn-negative and STn-positive patients.^ Results. Forty-eight (23%) of the 207 specimens demonstrated positive staining of STn. With a median follow-up of five years, STn-positivity was associated with a higher 5-year recurrence-free survival time than STn-negativity (67% vs. 80%, respectively; p = 0.03). STn expression was significantly associated with menopausal status (p = 0.04) but not other conventional prognostic markers. The risk of breast cancer recurrence and death was assessed by multivariate Cox regression analyses with adjustment for lymph node status, tumor size, menopausal status, hormone receptor status, nuclear grade, S-phase fraction and ploidy. In the final multivariate model for recurrence-free survival, the three factors that showed prognostic significance were: lymph node status (hazard ratio (HR) 3.04, 95% confidence interval (CI) 1.08-8.49), STn expression (HR 2.02, 95% CI 1.09-3.73), and tumor size (HR 1.96, 95% CI 1.05-3.64). STn was also associated with worse overall survival (HR 2.16, 95% CI 0.95-4.92) in multivariate analysis.^ Conclusion. STn antigen was shown to be a predictor of poor outcome in breast cancer. This tumor-associated antigen may be a valuable marker for identifying individuals at high risk of developing recurrent disease who may benefit from adjuvant therapy targeted at STn following definitive local therapy. Further study is needed to clarify the biologic and prognostic role of STn in breast cancer. ^
Resumo:
Prostate cancer is the most commonly diagnosed cancer and the second leading cause of cancer mortality in American men. The distinction between those cases of prostate cancer destined to progress rapidly to lethal metastatic disease and those with little likelihood of causing morbidity and mortality is a major goal of current research. Some type of diagnostic method is urgently needed to identify which histological prostate cancers have completed the progression to a stage that will produce a life-threatening disease, thus requiring immediate therapeutic intervention. The objectives of this dissertation are to delineate a novel genetic region harboring tumor suppressor gene(s) and to identify a marker for prostate tumorigenesis. I first established an in vitro cell model system from a human prostate epithelial cells derived from tissue fragments surrounding a prostate tumor in a patient with prostatic adenocarcinoma. Since chromosome 5 abnormality was present in early, middle and late passages of this cell model system, I examined long-term established prostate cancer cell lines for this chromosome abnormality. The results implicated the region surrounding marker D5S2068 as the locus of interest for further experimentation and location of a tumor suppressor gene in human prostate cancer. ^ Cancer is a group of complex genetic diseases with uncontrolled cell; division and prostate cancer is no exception. I determined if telomeric DNA, and telomerase activity, alone or together, could serve as biomarkers of prostate tumorigenesis. I studied three newly established human prostate cancer cell lines and three fibroblast cell cultures derived from prostate tissues. In conclusion, my data reveal that in the presence of telomerase activity, telomeric repeats are maintained at a certain optimal length, and analysis of telomeric DNA variations might serve as early diagnostic and prognostic biomarkers for prostate cancer. (Abstract shortened by UMI.)^
Resumo:
The major complications for tumor therapy are (i) tumor spread (metastasis); (ii) the mixed nature of tumors (heterogeneity); and (iii) the capacity of tumors to evolve (progress). To study these tumor characteristics, the rat 13762NF mammary adenocarcinoma was cloned and studied for metastatic properties and sensitivities to therapy (chemotherapy, radiation and hyperthermia). The cell clones were heterogeneous and no correlation between metastatic potential and therapeutic sensitivities was observed. Further, these phenotypes were unstable during passage in vitro; yet, the changes were clone dependent and reproducible using different cryoprotected cell stocks. To understand the phenotypic instability, subclones were isolated from low and high passage cell clones. Each subclone possessed a unique composite phenotype. Again, no apparent correlation was seen between metastatic potential and sensitivity to therapy. The results demonstrated that (1) tumor cells are heterogeneous for multiple phenotypes; (2) tumor cells are unstable for multiple phenotypes; (3) the magnitude, direction and time of occurrence of phenotypic drift is clone dependent; (4) the sensitivity of cell clones to ionizing radiation (gamma or heat) and chemotherapy agents is independent of their metastatic potential; (5) shifts in metastatic potential and sensitivity to therapy may occur simultaneously but are not linked; and (6) tumor cells independently diverge to form several subpopulations with unique phenotypic profiles. ^
Resumo:
In this study, we demonstrated the novel functions of two important prognostic markers in breast cancer, EGFR and b -catenin in proliferation and/or other transformation phenotype. ^ First we demonstrated that EGFR could be detected in the nucleus in highly proliferating tissues, including primary breast cancer samples and a breast cancer cell line. We found that EGFR contained a strong transactivation domain, complexed with an AT-rich consensus DNA sequence and activated promoters containing this sequence, including cyclin D1 promoter. Therefore, EGFR may function as a transcription factor to activate genes required for highly proliferating activity such as cyclin D1 in breast cancer. ^ In the second part of this study, we identified b -catenin as an important prognostic factor in breast cancer. We found that cyclin D1 was one of the genes regulated by b -catenin in breast cancer cells. The transactivation activity of b -catenin correlated significantly with cyclin D1 expression in both breast cancer cell lines and in breast cancer patient samples, in which high b -catenin activity correlated with poor prognosis of the patients. Moreover, blockage of b -catenin activity significantly inhibited transformation phenotypes in breast cancer cells. Therefore, our results indicate that b -catenin can be involved in breast cancer formation and/or progression and may serve as a target for breast cancer therapy. ^
Resumo:
The magnitude of the interaction between cigarette smoking, radiation therapy, and primary lung cancer after breast cancer remains unresolved. This case control study further examines the main and joint effects of cigarette smoking and radiation therapy (XRT) among breast cancer patients who subsequently developed primary lung cancer, at The University of Texas M. D. Anderson Cancer Center (MDACC) in Houston, Texas. Cases (n = 280) were women diagnosed with primary lung cancer between 1955 and 1970, between 30–89 years of age, who had a prior history of breast cancer, and were U.S. residents. Controls (n = 300) were randomly selected from 37,000 breast cancer patients at MDACC and frequency matched to cases on age at diagnosis (in 5-year strata), ethnicity, year of breast cancer diagnosis (in 5-year strata), and had survived at least as long as the time interval for lung cancer diagnosis in the cases. Stratified analysis and unconditional logistic regression modeling were used to calculate the main and joint effects of cigarette smoking and radiation treatment on lung cancer risk. Medical record review yielded smoking information on 93% of cases and 84% of controls, and among cases 45% received XRT versus 44% of controls. Smoking increased the odds of lung cancer in women who did not receive XRT (OR = 6.0, 95%CI, 3.5–10.1) whereas XRT was not associated with increased odds (OR = 0.5, 95%CI, 0.2–1.1) in women who did not smoke. Overall the odds ratio for both XRT and smoking together compared with neither exposure was 9.00 (9 5% CI, 5.1–15.9). Similarly, when stratifying on laterality of the lung cancer in relation to the breast cancer, and when the time interval between breast and lung cancers was >10 years, there was an increased odds for both smoking and XRT together for lung cancers on the same side as the breast cancer (ipsilateral) (OR = 11.5, 95% CI, 4.9–27.8) and lung cancers on the opposite side of the breast cancer (contralateral) (OR= 9.6, 95% CI, 2.9–0.9). After 20 years the odds for the ipsilateral lung were even more pronounced (OR = 19.2, 95% CI, 4.2–88.4) compared to the contralateral lung (OR = 2.6, 95% CI, 0.2–2.1). In conclusion, smoking was a significant independent risk factor for lung cancer after breast cancer. Moreover, a greater than multiplicative effect was observed with smoking and XRT combined being especially evident after 10 years for both the ipsilateral and contralateral lung and after 20 years for the ipsilateral lung. ^
Resumo:
Pancreatic adenocarcinoma is currently the fifth-leading cause of cancer-related death in the United States. Like with other solid tumors, the growth and metastasis of pancreatic adenocarcinoma are dependent on angiogenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic molecule that plays an important role in angiogenesis, growth and metastasis of many types of human cancer, including pancreatic adenocarcinoma. However, the expression and regulation of VEGF in human pancreatic cancer cells are mostly unknown. ^ To examine the hypothesis that VEGF is constitutively expressed in human pancreatic cancer cells, and can be further induced by tumor environment factors such as nitric oxide, a panel of human pancreatic cancer cell lines were studied for constitutive and inducible VEGF expression. All the cell lines examined were shown to constitutively express various levels of VEGF. To identify the mechanisms responsible for the elevated expression of VEGF, its rates of turnover and transcription were then investigated. While the half-live of VEGF was unaffected, higher transcription rates and increased VEGF promoter activity were observed in tumor cells that constitutively expressed elevated levels of VEGF. Detailed VEGF promoter analyses revealed that the region from −267 to +50, which contains five putative Sp1 binding sites, was responsible for this VEGF promoter activity. Further deletion and point mutation analyses indicated that deletion of any of the four proximal Sp1 binding sites significantly diminished VEGF promoter activity and when all four binding sites were mutated, it was completely abrogated. Consistent with these observations, high levels of constitutive Sp1 expression and DNA binding activities were detected in pancreatic cancer cells expressing high levels of VEGF. Collectively, our data indicates that constitutively expressed Sp1 leads to the constitutive expression of VEGF, and implicates that both molecules involve in the aggressive pathogenesis of human pancreatic cancer. ^ Although constitutively expressed in pancreatic cancer cells, VEGF can be further induced. In human pancreatic cancer specimens, we found that in addition to VEGF, both inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were overexpressed, suggesting that nitric oxide might upregulate VEGF expression. Indeed, a nitric oxide donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) significantly induced VEGF mRNA expression and protein secretion in pancreatic adenocarcinoma cells in a time- and dose-dependant manner. Using a luciferase reporter containing both the VEGF promoter and the 3′ -UTR, we showed that SNAP significantly increased luciferase activity in human pancreatic cancer cells. Notwithstanding its ability to induce VEGF in vitro, pancreatic cancer cells genetically engineered to produce NO did not exhibit increased tumor growth. This inability of NO to promote tumor growth appears to be related to NO-mediated cytotoxicity. The balance between NO mediated effects on pro-angiogenesis and cytotoxicity would determine the biological outcome of NO action on tumor cells. ^ In summary, we have demonstrated that VEGF is constitutively expressed in human pancreatic cancer cells, and that overexpression of transcription factor Sp1 is primarily responsible. Although constitutively expressed in these cells, VEGF can be further induced by NO. However, using a mouse model, we have shown that NO inhibited tumor growth by promoting cytotoxicity. These studies suggest that both Sp1 and NO may be important targets for designing potentially effective therapies of human pancreatic cancer and warrant further investigation. ^
High-resolution microarray analysis of chromosome 20q in human colon cancer metastasis model systems
Resumo:
Amplification of human chromosome 20q DNA is the most frequently occurring chromosomal abnormality detected in sporadic colorectal carcinomas and shows significant correlation with liver metastases. Through comprehensive high-resolution microarray comparative genomic hybridization and microarray gene expression profiling, we have characterized chromosome 20q amplicon genes associated with human colorectal cancer metastasis in two in vitro metastasis model systems. The results revealed increasing complexity of the 20q genomic profile from the primary tumor-derived cell lines to the lymph node and liver metastasis derived cell lines. Expression analysis of chromosome 20q revealed a subset of over expressed genes residing within the regions of genomic copy number gain in all the tumor cell lines, suggesting these are Chromosome 20q copy number responsive genes. Bases on their preferential expression levels in the model system cell lines and known biological function, four of the over expressed genes mapping to the common intervals of genomic copy gain were considered the most promising candidate colorectal metastasis-associated genes. Validation of genomic copy number and expression array data was carried out on these genes, with one gene, DNMT3B, standing out as expressed at a relatively higher levels in the metastasis-derived cell lines compared with their primary-derived counterparts in both the models systems analyzed. The data provide evidence for the role of chromosome 20q genes with low copy gain and elevated expression in the clonal evolution of metastatic cells and suggests that such genes may serve as early biomarkers of metastatic potential. The data also support the utility of the combined microarray comparative genomic hybridization and expression array analysis for identifying copy number responsive genes in areas of low DNA copy gain in cancer cells. ^
Resumo:
Objectives. The chief goal of this study was to analyze copy number variation (CNV) in breast cancer tumors from 25 African American women with early stage breast cancer (BC) using molecular inversion probes (MIP) in order to: (1) compare the degree of CNV in tumors compared to normal lymph nodes, and (2) determine whether gains and/or losses of genes in specific chromosomes differ between pathologic subtypes of breast cancer defined by known prognostic markers, (3) determine whether gains/losses in CN are associated with known oncogenes or tumor suppressor genes, and (4) determine whether increased gains/losses in CN for specific chromosomes were associated with differences in breast cancer recurrence. ^ Methods. Twenty to 37 nanograms of DNA extracted from 25 formalin-fixed paraffin embedded (FFPE) tumor samples and matched normal lymph nodes were added to individual tubes. Oligonucleotide probes with recognition sequences at each terminus were hybridized with a genomic target sequence to form a circular structure. Probes are released from genomic DNA obtained from FFPE samples, and those which have been correctly "circularized" in the proper allele/nucleotide reaction combination are amplified using polymerase chain reaction (PCR) primers. Amplicons were fluorescently labeled and the tag sequences released from the genome homology regions by treatment with uracil-N-glycosylase to cleave the probe at the site where uracils are present, and detected using a complementary tag array developed by Affymetrix. ^ Results. Analysis of CN gains and losses from tumors and normal tissues showed marked differences in tumors with numerous chromosomes affected. Similar changes were not observed in normal lymph nodes. When tumors were stratified into four groups based on expression or lack of expression of the estrogen receptor and HER2/neu, distinct patterns of CNV for different chromosomes were observed. Gains or losses in CN for specific chromosomes correlated with amplifications/deletions of particular oncogenes or tumor suppressor genes (i.e. such as found on chromosome 17) known to be associated with aggressive tumor phenotype and poor prognosis. There was a trend for increases in CN observed for chromosome 17 to correlate inversely with time to recurrence of BC (p=0.14 for trend). CNV was also observed for chromosomes 5, 8, 10, 11, and 16, which are known sites for several breast cancer susceptibility alleles. ^ Conclusions. This study is the first to validate the MIP technique, to correlate differences in gene expression with known prognostic tumor markers, and to correlate significant increases/decreases in CN with known tumor markers associated with prognosis. The results of this study may have far reaching public health implications towards identifying new high-risk groups based on genomic differences in CNP, both with respect to prognosis and response to therapy, and to eventually identify new therapeutic targets for prevention and treatment of this disease. ^
Resumo:
Cancer cell lines can be treated with a drug and the molecular comparison of responders and non-responders may yield potential predictors that could be tested in the clinic. It is a bioinformatics challenge to apply the cell line-derived multivariable response predictors to patients who respond to therapy. Using the gene expression data from 23 breast cancer cell lines, I developed three predictors of dasatinib sensitivity by selecting differentially expressed genes and applying different classification algorithms. The performance of these predictors on independent cell lines with known dasatinib response was tested. The predictor based on weighted voting method has the best overall performance. It correctly predicted dasatinib sensitivity in 11 out of 12 (92%) breast and 17 out of 23 (74%) lung cancer cell lines. These predictors were then applied to the gene expression data from 133 breast cancer patients in an attempt to predict how the patients might respond to dasatinib therapy. Two predictors identified 13 patients in common to be dasatinib sensitive. Sixty two percent of these cases are triple negative (ER-negative, HER2-negative and PR-negative) and 76% are double negative. The result is consistent with the findings from other studies, which identified a target population for dasatinib treatment to be triple negative or basal breast cancer subtype. In conclusion, we think that the cell line-derived dasatinib classifiers can be applied to the human patients. ^
Resumo:
Despite of much success of breast cancer treatment, basal-like breast cancer subtype still presented as a clinical challenge to mammary oncologist for its lack of available targeted therapy owing to their negative expression of targeted molecules, such as PgR, ERα and Her2. These molecules are all critical regulators in mammary gland development. EZH2, a histone methyltransferase, by forming Polycomb Repressive Complex 2(PRC2) can directly suppress a large array of developmental regulators. Overexpression of cyclin E has also been correlated with basal-like (triple-negative) breast cancer and poor prognosis. We found an important functional link between these two molecules. Cyclin E/Cdk2 can enhance PRC2 function by phosphorylating a specific residue of EZH2, threonine 416 and increasing EZH2's ability to complex with SUZ12. This regulation would further recruit whole PRC2 complex to core promoter regions of these developmental regulators. The local enrichment of PRC2 complex would then trimethylate H3K27 around the core promoter regions and suppress the expression of targeted genes, which included PgR, ERα, erbB2 and BRCA1. This widespread gene suppressive effect imposed by highly active PRC2 complex would then transform the lumina) type cell to adopt a basal-like phenotype. This finding suggested deregulated Cdk2 activity owing to cyclin E overexpression may contribute to basal phenotype through enhancing epigenetic silencing effects by regulating PRC2 function. Inhibition of Cdk2 activity in basal-like cancer cells may help release the suppression, reexpress the silenced genes and become responsive to existing anti-hormone or anti-Her2 therapy. From this study, the mechanisms described here provided a rationale to target basal-like breast cancer by new combinational therapy of Cdk2 inhibitors together with Lapatinib, or Aromatin. ^
Resumo:
Objectives. Triple Negative Breast Cancer (TNBC) lack expression of estrogen receptors (ER), progesterone receptors (PR), and absence of Her2 gene amplification. Current literature has identified TNBC and over-expression of cyclo-oxygenase-2 (COX-2) protein in primary breast cancer to be independent markers of poor prognosis in terms of overall and distant disease free survival. The purpose of this study was to compare COX-2 over-expression in TNBC patients to those patients who expressed one or more of the three tumor markers (i.e. ER, and/or PR, and/or Her2).^ Methods. Using a secondary data analysis, a cross-sectional design was implemented to examine the association of interest. Data collected from two ongoing protocols titled "LAB04-0657: a model for COX-2 mediated bone metastasis (Specific aim 3)" and "LAB04-0698: correlation of circulating tumor cells and COX-2 expression in primary breast cancer metastasis" was used for analysis. A sample of 125 female patients was analyzed using Chi-square tests and logistic regression models. ^ Results. COX-2 over-expression was present in 33% (41/125) and 28% (35/124) patients were identified as having TNBC. TNBC status was associated with elevated COX-2 expression (OR= 3.34; 95% CI= 1.40–8.22) and high tumor grade (OR= 4.09; 95% CI= 1.58–10.82). In a multivariable analysis, TNBC status was an important predictor of COX-2 expression after adjusting for age, menopausal status, BMI, and lymph node status (OR= 3.31; 95% CI: 1.26–8.67; p=0.01).^ Conclusion. TNBC is associated with COX-2 expression—a known marker of poor prognosis in patients with operable breast cancer. Replication of these results in a study with a larger sample size, or a future randomized clinical trial demonstrating an improved prognosis with COX-2 suppression in these patients would support this hypothesis.^
Resumo:
Most human tumors contain a population of cells with stem cell properties, called cancer stem cells (CSCs), which are believed to be responsible for tumor establishment, metastasis, and resistance to clinical therapy. It’s crucial to understand the regulatory mechanisms unique to CSCs, so that we may design CSC-specific therapeutics. Recent discoveries of microRNA (miRNA) have provided a new avenue in understanding the regulatory mechanisms of cancer. However, how miRNAs may regulate CSCs is still poorly understood. Here, we present miRNA expression profiling in six populations of prostate cancer (PCa) stem/progenitor cells that possess distinct tumorigenic properties. Six miRNAs were identified to be commonly and differentially expressed, namely, four miRNAs (miR-34a, let-7b, miR-106a and miR-141) were under-expressed, and two miRNAs (miR-301 and miR-452) were over-expressed in the tumorigenic subsets compared to the corresponding marker-negative subpopulations. Among them, the expression patterns of miR-34, let-7b, miR-141 and miR-301 were further confirmed in the CD44+ human primary prostate cancer (HPCa) samples. We then showed that miR-34a functioned as a critical negative regulator in prostate CSCs and PCa development and metastasis. Over-expression of miR-34a in either bulk or CD44+ PCa cells significantly suppressed clonal expansion, tumor development and metastasis. Systemic delivery of miR-34a in tumor-bearing mice demonstrated a potent therapeutic effect again tumor progression and metastasis, leading to extended animal survival. Of great interest, we identified CD44 itself as a direct and relevant downstream target of miR-34a in mediating its tumor-inhibitory effects. Like miR-34a, let-7 manifests similar tumor suppressive effects in PCa cells. In addition, we observed differential mechanisms between let-7 and miR-34a on cell cycle, with miR-34a mainly inducing G1 cell-cycle arrest followed by cell senescence and let-7 inducing G2/M arrest. MiR-301, on the other hand, exerted a cell type dependent effect in regulating prostate CSC properties and PCa development. In summary, our work reveals that the prostate CSC populations display unique miRNA expression signatures and different miRNAs distinctively and coordinately regulate various aspects of CSC properties. Altogether, our results lay a scientific foundation for developing miRNA-based anti-cancer therapy.