38 resultados para endotoxin, Escherichia coli


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formation of the FtsZ ring (Z ring) in Escherichia coli is the first step in assembly of the divisome, a molecular machine composed of 14 known proteins which are all required for cell division. Although the biochemical functions of most divisome proteins are unknown, several of these have overlapping roles in ensuring that the Z ring assembles at the cytoplasmic membrane and is active. ^ We identified a single amino acid change in FtsA, R286W, renamed FtsA*, that completely bypasses the requirement for ZipA in cell division. This and other data suggest that FtsA* is a hyperactive form of FtsA that can replace the multiple functions normally assumed by ZipA, which include stabilization of Z rings, recruitment of downstream cell division proteins, and anchoring the Z ring to the membrane. This is the first example of complete functional replacement of an essential prokaryotic cell division protein by another. ^ Cells expressing ftsA* with a complete deletion of ftsK are viable and divide, although many of these ftsK null cells formed multiseptate chains, suggesting a role in cell separation for FtsK. In addition, strains expressing extra ftsAZ, ftsQ, ftsB, zipA or ftsN, were also able to survive and divide in the absence of ftsK. The cytoplasmic and transmembrane domains of FtsQ were sufficient to allow viability and septum formation to ftsK deleted strains. These findings suggest that FtsK is normally involved in stabilizing the divisome and shares functional overlap with other cell division proteins. ^ As well as permitting the removal of other divisome components, the presence of FtsA* in otherwise wild-type cells accelerated Z-ring assembly, which resulted in a significant decrease in the average length of cells. In support of its role in Z-ring stability, FtsA* suppressed the cell division inhibition caused by overexpressing FtsZ. FtsA* did not affect FtsZ turnover within the Z ring as measured by fluorescence recovery after photobleaching. Turnover of FtsA* in the ring was somewhat faster than wild-type FtsA. Yeast two-hybrid data suggest that FtsA* has an increased affinity for FtsZ relative to wild-type FtsA. These results indicate that FtsA* interacts with FtsZ more strongly, and its enhancement of Z ring assembly may explain why FtsA* can permit survival of cells lacking ZipA or FtsK.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acute diarrhea is the most common medical problem in the developing countries. Infectious agents are responsible for a majority of cases of acute diarrhea. Knowing the cause of acute diarrhea is important to developing plans for disease prevention, control and therapy. Acute diarrhea is caused by many viruses, bacteria and parasites. ^ Travelers to developing countries of the world commonly develop diarrhea as a result of eating contaminated food or drinking contaminated water. About 30-50% of travelers who travel from industrialized countries like United States to the developing countries are at risk of developing diarrhea. High risk areas for travelers' diarrhea are Mexico, Latin America and Southeast Asia. Public restaurants are the common sites for exposure to this type of food-borne infectious disease in travelers. Food becomes contaminated when they are handled by people with fecal content on their hands. ^ The importance of Diffusely Adherent Escherichia Coli (DAEC) in travelers to these areas has not been well studied. Some of the studies looking at DAEC have shown the organism to be present in children without symptoms. Other studies have shown a relationship between DAEC infection and presence of symptoms. I have selected this topic because the patho-physiological processes in DAEC infection that allow intestinal and extra-intestinal infections to develop are not fully understood. DAEC related acute diarrhea is a relatively new topic of public health significance. There is a limited number of studies regarding the virulence and pathogenic mechanisms of DAEC. The presumed virulence factor of the organism is diffuse attachment to the intestinal lining of the infected host. However more research needs to be done to identify the pathogenic mechanisms and virulence factors associated with DAEC infection for better treatment planning and diarrhea prevention. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diarrheal disease associated with enterotoxigenic Escherichia coli (ETEC) infection is one of the major public health problems in many developing countries, especially in infants and young children. Because tests suitable for field laboratories have been developed only relatively recently, the literature on the environmental risk factors associated with ETEC is not as complete as for many other pathogens or for diarrhea of unspecified etiology.^ Data from a diarrheal disease surveillance project in rural Egypt in which stool samples were tested for a variety of pathogens, and in which an environmental questionnaire was completed for the same study households, provided an opportunity to test for an association between ETEC and various risk factors present in those households. ETEC laboratory-positive specimens were compared with ETEC laboratory-negative specimens for both symptomatic and asymptomatic children less than three years of age at the individual and household level using a case-comparison design.^ Individual children more likely to have LT infection were those who lived in HHs that had cooked food stored for subsequent consumption at the time of the visit, where caretakers used water but not soap to clean an infant after a diarrheal stool, and that had an indoor, private water source. LT was more common in HHs where the caretaker did not clean an infant with soap after a diarrheal stool, and where a sleeping infant was not covered with a net. At both the individual and HH level, LT was significantly associated with good water supply in terms of quantity and storage.^ ST was isolated more frequently at the individual level where a sleeping infant was covered with a net, where large animals were kept in or around the house, where water was always available and was not potable, and where the water container was not covered. At the HH level, the absence of a toilet or latrine and the indiscriminate disposal of animal waste decreased risk. Using animal feces for fertilizer, the presence of large animals, and poor water quality were associated with ST at both the individual and HH level.^ These findings are mostly consistent with those of other studies, and/or are biologically plausible, with the obvious exception of those from this study where poorer water supplies are associated with less infection, at least in the case of LT. More direct observation of how animal ownership and feces disposal relates to different types of water supply and usage might clarify mechanisms through which some ETEC infection could be prevented in similar settings. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Family members of Enterobacteriaceae are found in small numbers associated with acute diarrhea. These species are sometimes mistaken for ETEC. ^ Methods: Forty-four non-E. coli species from travelers' diarrhea are compared to 30 strains of Escherichia coli (ETEC) and 30 strains of normal flora E. coli. Tissue culture supernatants were assayed by enzyme-linked immunosorbent assay for amounts of IL-8, IL-1, and IL-1ra. Amounts of heat-stable (ST) and heat-labile (LT) enterotoxins were assayed from cell culture supernatants by enzyme-linked immunoassay. PCR was use to determine which species was positive colonization factor antigens, CFA/I, CS3, and CS6. ^ Results: Normal flora E. coli significantly induced the production of more IL-8 than non- E. coli and ETEC. Normal E. coli also induced the production of more IL-1and IL-1ra than ETEC. Non-E. coli produced more ST than ETEC. A small percentage of enterotoxigenic non- E. coli gram negatives and ETEC were positive for CFA/I and CS6. None of the strains were positive for CS3. ^ Conclusions: Non-E. coli enterotoxigenic gram negatives were similar to ETEC in their virulence factors. Identification and further study of these non-E.coli strains is important for understanding their pathogenic role in acute diarrhea.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphatidylserine decarboxylase of E. coli, a cytoplasmic membrane protein, catalyzes the formation of phosphatidylethanolamine, the principal phospholipid of the organism. The activity of the enzyme is dependent on a covalently bound pyruvate (Satre and Kennedy (1978) J. Biol. Chem. 253, 479-483). This study shows that the enzyme consists of two nonidentical subunits, $\alpha$ (Mr = 7,332) and $\beta$ (Mr = 28,579), with the pyruvate prosthetic group in amide linkage to the amino-terminus of the $\alpha$ subunit. Partial protein sequence and DNA sequence analysis reveal that the two subunits are derived from a proenzyme ($\pi$ subunit, Mr = 35,893) through a post-translational event. During the conversion of the proenzyme to the $\alpha$ and $\beta$ subunits, the peptide bond between Gly253-Ser254 is cleaved, and Ser254 is converted to the pyruvate prosthetic group at the amino-terminus of the $\alpha$ subunit (Li and Dowhan (1988) J. Biol. Chem. 263, 11516-11522).^ The proenzyme cannot be detected in cells carrying either single or multiple copies of the gene (psd), but can be observed in a T7 RNA polymerase/promoter and transcription-translation system. The cleavage of the wild-type proenzyme occurs rapidly with a half-time on the order of 2 min. Changing of the Ser254 to cysteine (S254C) or threonine (S254T) slows the cleavage rate dramatically and results in mutants with a half-time for processing of around 2-4 h. Change of the Ser254 to alanine (S254A) blocks the cleavage of the proenzyme. The reduced processing rate with the mutations of the proenzyme is consistent with less of the functional enzyme being made. Mutants S254C and S254T produce $\sim$15% and $\sim$1%, respectively, of the activity of the wild-type allele, but can still complement a temperature-sensitive mutant of the psd locus. Neither detectable activity nor complementation is observed by mutant S254A. These results are consistent with the hydroxyl-group of the Ser254 playing a critical role in the cleavage of the peptide bond Gly253-Ser254 of the pro-phosphatidylserine decarboxylase, and support the mechanism proposed by Snell and co-workers (Recsei and Snell (1984) Annu. Rev. Biochem. 53, 357-387) for the formation of the prosthetic group of pyruvate-dependent decarboxylases. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recA gene is essential for SOS response induction, for inducible DNA repair and for homologous recombination in E. coli. The level of recA expression is significant for these functions. A basal level of about 1000 molecules of RecA protein is sufficient for homologous recombination of the cell and is essential for the induction of the SOS response. Based on previous observations, two models regarding the origin of the basal RecA protein were postulated. One was that it comes from the leaky expression of the LexA repressed promoter. The other was that it is from another weak but constitutive promoter. The first part of this thesis is to study these possibilities. An $\Omega$ cartridge containing the transcription terminator of gene 32 of T4 phage was exploited to define a second promoter for recA expression. Insertion of this $\Omega$ cartridge downstream of the known promoter gave rise to only minor expression. Purification and N-terminus sequencing of the RecA protein from the insertion mutant did not support the existence of a second promoter. To determine whether the basal RecA is due to the leaky expression of the known LexA repressed promoter, recA expression of a SOS induction minus strain (basal level expression of recA) was compared with that of a recA promoter down mutation recA1270. The result demonstrated that there is leaky expression from the LexA repressed promoter. All the evidence supports the conclusion that there is only one promoter for both basal and induced expression levels of recA.^ Several translation enhancer sequences which are complementary to different regions of the 16S rRNA were found to exist in recA mRNA. The leader sequence of recA mRNA is highly complementary to a region of the 16S rRNA. Thus it appeared that recA expression could be regulated at post-transcriptional levels. The second part of this thesis is focused on the study of the post-transcriptional control of recA expression. Deletions of the complementary regions were created to examine their effect on recA expression. The results indicated that all of the complementary regions were important for the normal expression of recA and their effects were post-transcriptional. RNA secondary structures of wild type recA mRNA was inspected and a stem-loop structure was revealed. The expression down mutations at codon 10 and 11 were found to stabilize this structure. The conclusions of the second part of this thesis are that there is post-transcriptional control for recA expression and the leader sequence of recA mRNA plays more than one role in the control of recA expression. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hypermodified, hydrophobic 2-methylthio-N$\sp6$-(dimethylallyl)-adenosine (ms${2{\cdot}6}\atop1$A) residue occurs $3\sp\prime$ to the anticodon in tRNA species that read codons beginning with U. The first step (i$\sp6$A37 formation) of this modification is catalyzed by dimethylallyl diphosphate:tRNA dimethyallyltransferase (EC 2.5.1.8), which is the product of the miaA gene. Subsequent steps were proposed to be catalyzed by MiaB and MiaC enzymes to complete the ms${2{\cdot}6}\atop1$A37 modification. The study of functions of the ms${2{\cdot}6}\atop1$A37 is very important because this modified base is one of the best candidates for a role in global control in response to environmental stress. This dissertation describes the further delineation of functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli K-12 cells. This work provides significant information on functions of tRNA modifications in E. coli cells to adapt to stressful environmental conditions. Three hypotheses were tested in this work.^ The first hypothesis tested was that non-optimal translation processes cause increased spontaneous mutagenesis by the induction of SOS response in starving cells. To test this hypothesis, I measured spontaneous mutation rates of wild type cells and various mutant strains which are defective in tRNA modification, SOS response, or oxidative damage repair. I found that the miaA mutation acts as a mutator that increased Lac$\sp+$ reversion rates and Trp$\sp+$ reversion frequencies of the wild-type cells in starving conditions. However, the lexA3(Ind)(which abolishes the induction of SOS response) mutation abolished the mutator phenotype of the miaA mutant. The recA430 mutation, not other identified SOS genes, decreased the Lac$\sp+$ reversion to a less extent than that of the lexA3(Ind) mutation. These results suggest that RecA together with another unidentified SOS gene product are responsible for the process.^ The second hypothesis tested was that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ molecules in form of a protein dimer. To test this hypothesis, three versions of the MiaA protein and seven species of tRNA substrates were purified. Binding studies by gel mobility shift assays, filter binding assays and gel filtration shift assays support the hypothesis that MiaA protein binds to full-length tRNA$\sp{\rm Phe}$ as a protein dimer but as a monomer to the anticodon stem-and-loop. These results were further supported by using steady state enzyme kinetic studies.^ The third hypothesis tested in this work was that the miaB gene in E. coli exists and is clonable. The miaB::Tn10dCm insertion mutation of Salmonella typhimurium was transduced to E. coli K-12 cells by using P$\sb1$ and P$\sb{22}$ bacteriophages. The insertion was confirmed by HPLC analyses of nucleotide profiles of miaB mutants of E. coli. The insertion mutation was cloned and DNA sequences adjacent to the transposon were sequenced. These DNA sequences were 86% identical to the f474 gene at 14.97 min chromosome of E. coli. The f474 gene was then cloned by PCR from the wild-type chromosome of E. coli. The recombinant plasmid complemented the mutant phenotype of the miaB mutant of E. coli. These results support the hypothesis that the miaB gene of E. coli exists and is clonable. In summary, functions of the ms${2{\cdot}6}\atop1$A37 modification in E. coli cells are further delineated in this work in perspectives of adaptation to stressful environmental conditions and protein:tRNA interaction. (Abstract shortened by UMI.) ^