39 resultados para cell-type specificity
Resumo:
Respiratory diseases are a major cause of mortality and morbidity worldwide. Current treatments offer no prospect of cure or disease reversal. Transplantation of pulmonary progenitor cells derived from human embryonic stem cells (hESCs) may provide a novel approach to regenerate endogenous lung cells destroyed by injury and disease. Here, we examine the therapeutic potential of alveolar type II epithelial cells derived from hESCs (hES-ATIICs) in a mouse model of acute lung injury. When transplanted into lungs of mice subjected to bleomycin (BLM)-induced acute lung injury, hES-ATIICs behaved as normal primary ATIICs, differentiating into cells expressing phenotypic markers of alveolar type I epithelial cells. Without experiencing tumorigenic side effects, lung injury was abrogated in mice transplanted with hES-ATIICs, demonstrated by recovery of body weight and arterial blood oxygen saturation, decreased collagen deposition, and increased survival. Therefore, transplantation of hES-ATIICs shows promise as an effective therapeutic to treat acute lung injury.
Resumo:
Morphological analysis of neonatal rabbit retina suggests that the type-A horizontal cell acts as the pioneer cell for development of the OPL. It is the first mature element of the OPL, and it forms the infrastructure upon which the OPL accrues. The role of type-A horizontal cells in influencing postnatal development of the OPL was examined.^ GABAergic characteristics of the type-A horizontal cell were defined. The type-A horizontal cell was found to possess two more GABAergic characteristics in addition to those previously demonstrated, during a short period in early postnatal development: endogenous stores of GABA and the GABA precursor, glutamate. Lesioning the type-A horizontal cell resulted in their permanent loss in addition to the disappearance of cone terminals and a dramatic increase in rod terminals within the OPL. Thus the type-A cells are not a necessary prerequisite for positioning the OPL in postnatal development, but may be necessary for establishment of the normal photoreceptor mosaic.^ Since type-A horizontal cells possess a number of GABAergic qualities during the period of cone photoreceptor cell differentiation, and there are reports of GABA's trophic action in other developing neuronal systems; the role that GABAergic type-A horizontal cells play in directing photoreceptor differentiation was examined.^ Disrupting effects of GABA-A receptor antagonists indicate that type-A horizontal cells act as postsynaptic targets for the growing cone terminals of photoreceptor cells. These trophic or synaptic interactions may involve GABA-A receptors activated by GABA released from horizontal cells. These findings are consistent with the hypothesis that type-A horizontal cells act as pioneering cells in directing the postnatal development of the OPL.^ These studies offer an in depth analysis of the structural and chemical relationship between type-A horizontal cells and other elements of the OPL from which the roles of type-A horizontal cells and the GABA system in development can be defined. They contribute to our knowledge of both structural and GABAergic mechanisms involved in central nervous system development. ^
Resumo:
Numerous co-factors, genetic, environmental and physical, play an important role in development and prognosis of cancer. Each year in the USA, more than 31,000 cases of oral and 13,000 cases of cervical cancer are diagnosed. Substantial epidemiological data supports a high correlation between development of these cancers and the presence of specific types of human papillomaviruses (HPV). Molecular biological studies show that not only are several of the viral genes necessary and sufficient to cause transformation but they also function synergistically with other co-factors. Evidence suggests that prevention of infection or inhibition of viral gene expression may alter the course of malignant transition. The main objective of this project was to test the hypothesis that some human carcinoma cells, containing HPV, behave in malignant manner because the viral genes function in the maintenance of some aspect of the transformed phenotype.^ The specific aims were (1) to select oral and cervical cancer cell lines which were HPV-negative or which harbored transcriptionally active HPV-18, (2) to construct and determine the effects of recombinant sense or antisense expressing vectors, (3) to test the effects of synthetic antisense oligodeoxynucleotides on the transformed behavior of these cells.^ To screen cells, we performed Southern and Northern analysis and polymerase chain reactions. When antisense-expressing vectors were used, cells harboring low numbers of HPV-18 where unable to survive transfection but they were readily transfected with all other constructs. Rare antisense transfectants obtained from HPV-positive cells showed significantly altered characteristics including malignant potential in nude mice. The HPV-negative cells showed no differences in transfection efficiencies or growth characteristics with any construct.^ In addition, treatment of the HPV-positive cells with antisense, but not random oligodeoxynucleotides, resulted in decreased cell proliferation and even cell death. These effects were dose-dependent, synergistic and HPV-specific.^ These results suggest that expression of viral genes play an important role in the maintenance of the transformed phenotype which implies that inhibition of expression, by antisense molecules, may be therapeutic in HPV-induced tumors. ^
Resumo:
Cytotoxic T lymphocytes (CTLs) play an important role in the suppression of initial viremia after acute infection with the human immunodeficiency virus (HIV), the causative agent of acquired immune deficiency syndrome (AIDS). Most HIV-infected individuals attain a high titer of anti-HIV antibodies within weeks of infection; however this antibody-mediated immune response appears not to be protective. In addition, anti-HIV antibodies can be detrimental to the immune response to HIV through enhancement of infection and participating in autoimmune reactions as a result of HIV protein mimicry of self antigens. Thus induction and maintenance of a strong HIV-specific CTL immune response in the absence of anti-HIV antibodies has been proposed to be the most effective means of controlling of HIV infection. Immunization with synthetic peptides representing HIV-specific CTL epitopes provides a way to induce specific CTL responses, while avoiding stimulation of anti-HIV antibody. This dissertation examines the capacity of synthetic peptides from the V3 loop region of the gp120 envelope protein from several different strain of HIV-1 to induce HIV-specific, MHC-restricted CD8$\sp+$ CTL response in vivo in a mouse model. Seven synthetic peptides representative of sequences found throughout North America, Europe, and Central Africa have been shown to prime CTLs in vivo. In the case of the MN strain of HIV-1, a 13 amino acid sequence defining the epitope is most efficient for optimal induction of specific CTL, whereas eight to nine amino acid sequences that could define the epitope were not immunogenic. In addition, synthesis of peptides with specific amino acid substitutions that are important for either MHC binding or T cell receptor recognition resulted in peptides that exhibited increased immunogenicity and induced CTLs that displayed altered specificity. V3 loop peptides from HIV-1 MN, SC, and Z321 induced a CTL population that was broadly cross-reactive against strains of HIV-1 found throughout the world. This research confirms the potential efficacy of using synthetic peptides for in vivo immunization to induce HIV-specific CTL-mediated responses and provides a basis for further research into development of synthetic peptide-based vaccines. ^
Resumo:
In our studies we have focused on the issue of variability and diversity of the $\gamma$ (or $\delta)$ chain T cell receptor (TCR) genes by studying cDNA transcripts in peripheral blood mononuclear cells or $\gamma\delta$ TCR+ T cell clones. The significance of these studies lies in the better understanding of the molecular biology of the $\gamma\delta$ T cell receptor as well as in answering the question whether certain molecular forms predominate in $\gamma\delta$ T cells exhibiting specific immunologic functions. We establish that certain $\gamma$-chain TCR genes exhibit particular patterns of rearrangements in cDNA transcripts in normal individuals. V$\gamma$I subgroup were shown to preferentially rearrange to J$\gamma$2C$\gamma$2 gene segments. These preferential VJC rearrangements, may have implications regarding the potential for diversity and polymorphism of the $\gamma$-chain TCR gene. In addition, the preferential association of V$\gamma$I genes with J$\gamma$2C$\gamma$2, which encode a non-disulfide-linked $\gamma\delta$ TCR, suggests that $\gamma$ chains utilizing V$\gamma$I are predominantly expressed as non-disulfide-linked $\gamma\delta$ TCR heterodimers. The implications of this type of expression remain to be determined. We identified two alternative splicing events of the $\gamma$-chain TCR genes occurring in high frequency in all the normal individuals examined. These events may suggest additional mechanisms of regulation and control as well as diversification of $\gamma\delta$ TCR gene expression. The question whether particular forms of $\gamma$ or $\delta$-chain TCR genes are involved in HLA Class I recognition by specific $\gamma\delta$ cytotoxic T cell clones was addressed. Our results indicated that the T cell clones expressed identical $\gamma$ but distinct $\delta$-chains suggesting that the specificity for recognition of HLA-A2 or HLA-A3 may be conferred by the $\delta$-chain TCR. The issue of the degree of diversity and polymorphism of the $\delta$-chain TCR genes in a patient with a primary immunodeficiency (Omenn's syndrome) was addressed. A limited pattern of rearrangements in peripheral blood transcripts was found, suggesting that a limited $\gamma\delta$ TCR repertoire may be expressed in this particular primary immunodeficiency syndrome. Overall, our findings suggest that $\delta$-chain TCR genes exhibit the potential for significant diversity and that there are certain preferential patterns of expression that may be associated with particular immunologic functions. ^
Resumo:
Ras proteins serve as crucial signaling modulators in cell proliferation through their ability to hydrolyze GTP and exist in a GTP “on” state and GTP “off” state. There are three different human Ras isoforms: H-ras, N-ras and K-ras (4A and 4B). Although their sequence identity is very high at the catalytic domain, these isoforms differ in their ability to activate different effectors and hence different signaling pathways. Much of the previous work on this topic has attributed this difference to the hyper variable region of Ras proteins, which contains most of the sequence variance among the isoforms and encodes specificity for differential distribution in the membrane. However, we hypothesize that sequence variation on lobe II of Ras catalytic domain alters dynamics and leads to differential preference for different effectors or modulators. In this work, we used all atom molecular dynamics to analyze the dynamics in the catalytic domain of H-ras and K-ras. We have also analyzed the dynamics of a transforming mutant of H-ras and K-ras and further studied the dynamics of an effectorselective mutant of H-ras. Collectively we have determined that wild type K-ras is more dynamic than H-ras and that the structure of the effector binding loop more closely resembles that of the T35S Raf-selective mutant, possibly giving us a new view and insight into the v mode of effector specificity. Furthermore we have determined that specific mutations at the same location perturb the conformational equilibrium differently in H-ras and K-ras and that an enhanced oncogenic potential may arise from different structural perturbations for each point mutation of a specific isoform.
Resumo:
Cutaneous exposure to ultraviolet-B radiation (UVR) results in the suppression of cell-mediated immune responses such as contact hypersensitivity (CHS) and delayed-type hypersensitivity (DTH). This modulation of immune responses is mediated by local or systemic mechanisms, both of which are associated with the generation of antigen-specific suppressor T lymphocytes (Ts). UV-induced Ts have been shown to be CD3+CD4+CD8 − T cells that control multiple immunological pathways. However, the precise mechanisms involved in the generation and function of these immunoregulatory cells remain unclear. We investigated the cellular basis for the generation of UV-induced Ts lymphocytes in both local and systemic models of immune suppression, and further examined the pleiotrophic function of these immunoregulatory cells. ^ We used Thy1.1 and Thy1.2 congenic mice in a draining lymph node (DLN) cell transfer model to analyze the role played by epidermal Langerhans cells in the generation of Ts cells. We demonstrate that T cells tightly adhered to antigen-presenting cells (APC) from UV-irradiated skin are the direct progenitors of UV-induced Ts lymphocytes. Our studies also reveal that UV-induced DNA-damage in the form of cyclobutyl pyrimidine dimers (CPD) in the epidermal APC is crucial for the altered maturation of these adherent T cells into Ts. ^ We used TCR transgenic mice in an adoptive transfer model and physically tracked the antigen-specific clones during immune responses in unirradiated versus UV-irradiated mice. We demonstrate that UV-induced Ts and effector TDTH cells share the same epitope specificity, indicating that both cell populations arise from the same clonal progenitors. UVR also causes profound changes in the localization and proliferation of antigen-specific T cells during an immune response. Antigen-specific T cells are not detectable in the DLNs of UV-irradiated mice after 3 days post-immunization, but are found in abundance in the spleen. In contrast, these clones continue to be found in the DLNs and spleens of normal animals several days post-immunization. Our studies also reveal that a Th2 cytokine environment is essential for the generation of Ts in UV-irradiated mice. ^ The third part of our study examined the pleiotrophic nature of UV-induced Ts. We used a model for the induction of both cellular and humoral responses to human gamma-globulin (HGG) to demonstrate that UV-induced Ts lymphocytes can suppress DTH as well as antibody responses. (Abstract shortened by UMI.) ^
Resumo:
The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^
Resumo:
Histone acetylation is a central event in transcriptional activation. The importance of this modification in mammalian development is highlighted by knockout studies that revealed loss of the histone acetyltransferases GCN5, p300, or CBP results in embryonic lethality. Furthermore, early embryogenesis is sensitive to the dosage of p300 and CBP since double p300 +/−CBP+/− heterozygotes die in utero, although either single heterozygote survives. PCAF and GCN5 physically interact with p300 and CBP in vitro. To determine whether these two groups of HATs interact functionally in vivo, we created mice lacking one or more allele of p300, GCN5 or PCAF. As expected, we found that mice heterozygous for any one of these null alleles are viable. The majority of GCN5 p300 double heterozygotes also survive to adulthood with no apparent abnormalities. However, a portion of these mice die prior to birth. These embryos are developmentally stunted and exhibit increased apoptosis compared to wild type or single GCN5 or p300 heterozygous littermates at E8.5. Tissue specification is unaffected in these embryos but organ formation is compromised. In contrast, no abnormalities were observed in mice harboring mutations in both PCAF and p300 , emphasizing the specificity of HAT functions in mammalian development. ^ Since GCN5 null embryos die early in embryogenesis because of a marked increase in apoptosis, studies of its function and mechanism in late development and in tissue specific differentiation are precluded. Here, we also report the establishment of a GCN5 null embryonic stem cell line and a conditional floxGCN5 mouse line, which will serve as powerful genetic tools to examine in depth the function of GCN5 in mammalian development and in adult tissues. ^