51 resultados para cell lung-cancer


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Radiomics is the high-throughput extraction and analysis of quantitative image features. For non-small cell lung cancer (NSCLC) patients, radiomics can be applied to standard of care computed tomography (CT) images to improve tumor diagnosis, staging, and response assessment. The first objective of this work was to show that CT image features extracted from pre-treatment NSCLC tumors could be used to predict tumor shrinkage in response to therapy. This is important since tumor shrinkage is an important cancer treatment endpoint that is correlated with probability of disease progression and overall survival. Accurate prediction of tumor shrinkage could also lead to individually customized treatment plans. To accomplish this objective, 64 stage NSCLC patients with similar treatments were all imaged using the same CT scanner and protocol. Quantitative image features were extracted and principal component regression with simulated annealing subset selection was used to predict shrinkage. Cross validation and permutation tests were used to validate the results. The optimal model gave a strong correlation between the observed and predicted shrinkages with . The second objective of this work was to identify sets of NSCLC CT image features that are reproducible, non-redundant, and informative across multiple machines. Feature sets with these qualities are needed for NSCLC radiomics models to be robust to machine variation and spurious correlation. To accomplish this objective, test-retest CT image pairs were obtained from 56 NSCLC patients imaged on three CT machines from two institutions. For each machine, quantitative image features with concordance correlation coefficient values greater than 0.90 were considered reproducible. Multi-machine reproducible feature sets were created by taking the intersection of individual machine reproducible feature sets. Redundant features were removed through hierarchical clustering. The findings showed that image feature reproducibility and redundancy depended on both the CT machine and the CT image type (average cine 4D-CT imaging vs. end-exhale cine 4D-CT imaging vs. helical inspiratory breath-hold 3D CT). For each image type, a set of cross-machine reproducible, non-redundant, and informative image features was identified. Compared to end-exhale 4D-CT and breath-hold 3D-CT, average 4D-CT derived image features showed superior multi-machine reproducibility and are the best candidates for clinical correlation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer cell lines can be treated with a drug and the molecular comparison of responders and non-responders may yield potential predictors that could be tested in the clinic. It is a bioinformatics challenge to apply the cell line-derived multivariable response predictors to patients who respond to therapy. Using the gene expression data from 23 breast cancer cell lines, I developed three predictors of dasatinib sensitivity by selecting differentially expressed genes and applying different classification algorithms. The performance of these predictors on independent cell lines with known dasatinib response was tested. The predictor based on weighted voting method has the best overall performance. It correctly predicted dasatinib sensitivity in 11 out of 12 (92%) breast and 17 out of 23 (74%) lung cancer cell lines. These predictors were then applied to the gene expression data from 133 breast cancer patients in an attempt to predict how the patients might respond to dasatinib therapy. Two predictors identified 13 patients in common to be dasatinib sensitive. Sixty two percent of these cases are triple negative (ER-negative, HER2-negative and PR-negative) and 76% are double negative. The result is consistent with the findings from other studies, which identified a target population for dasatinib treatment to be triple negative or basal breast cancer subtype. In conclusion, we think that the cell line-derived dasatinib classifiers can be applied to the human patients. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transduction and activator of transcription 3 (Stat3) is activated by cytokines and growth factors in many cancers. Persistent activation of Stat3 plays important role in cell growth, survival, and transformation through regulating its targeted genes. Previously, we found that mice with a deletion of the G protein-coupled receptor, family C, group 5, member a (Gprc5a) gene develop lung tumors indicating that Gprc5a is a tumor suppressor. In the present study, we examined he mechanism of Gprc5a-mediated tumor suppression. We found that epithelial cells from Gprc5a knockout mouse lung (Gprc5a-/- cells) survive better in vitro in medium deprived of exogenous growth factors and form more colonies in semi-solid medium than their counterparts from wildtype mice (Gprc5a+/+ cells). The phosphorylation of tyrosine 705 on Stat3 and the expression of Stat3-regulated anti-apoptotic genes Bcl-XL, Cryab, Hapa1a, and Mcl1 were higher in the Gprc5a-/- than in Gprc5a+/+ cells. In addition, their responses to Lif were different; Stat3 activation was persistent by Lif treatment in the Gprc5a-/- cells, but was transient in the Gprc5a+/+ cells. The persistent activation of Stat3 by Lif in Gprc5a-/- cells is due to a decreased level of Socs3 protein, a negative inhibitor of the Lif-Stat3 signaling. Restoration of Socs3 inhibited the persistent Stat3 activation in Gprc5a-/- cells. Lung adenocarcinoma cells isolated from Gprc5a-/- mice also exhibited autocrine Lif-mediated Stat3 activation. Treatment of Gprc5a-/- cells isolated from normal and tumor tissue with AG490, a Stat3 signaling inhibitor, or with dominant negative Stat3(Y705F) increased starvation-induced apoptosis and inhibited anchorage-independent growth. These results suggest that persistent Stat3 activation increased the survival and transformation of Gprc5a-/- lung cells. Thus, the tumor suppressive effects of Gprc5a are mediated, at least in part, by inhibition of Stat3 signaling through regulating the stability of the Socs3 protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signaling through epidermal growth factor receptor (EGFR/ErbB) family members plays a very important role in regulating proliferation, development, and malignant transformation of mammary epithelial cells. ErbB family members are often over-expressed in human breast carcinomas. Lapatinib is an ErbB1 and ErbB2 tyrosine kinase inhibitor that has been shown to have anti-proliferative effects in breast and lung cancer cells. Cells treated with Lapatinib undergo G1 phase arrest, followed by apoptosis. Lapatinib has been approved for clinical use, though patients have developed resistance to the drug, as seen previously with other EGFR inhibitors. Moreover, the therapeutic efficacy varies significantly within the patient population, and the mechanism of drug sensitivity is not fully understood. Expression levels of ErbB2 are used as a prognostic marker for Lapatinib response; however, even among breast tumor cell lines that express similar levels of ErbB2 there is marked difference in their proliferative responses to Lapatinib. To understand the mechanisms of acquired resistance, we established a cell line SkBr3-R that is resistant to Lapatinib, from a Lapatinib-sensitive breast tumor cell line, SkBr3. We have characterized the cell lines and demonstrated that Lapatinib resistance in our system is not facilitated by receptor-level activity or by previously known mutations in the ErbB receptors. Significant changes were observed in cell proliferation, cell migration, cell cycle and cell death between the Lapatinib resistant SkBr3-R and sensitive SkBr3 cell lines. Recent studies have suggested STAT3 is upregulated in Lapatinib resistant tumors in association with ErbB signaling. We investigated the role that STAT3 may play in Lapatinib resistance and discovered higher STAT3 activity in these resistant cells. In addition, transcriptional profiling indicated higher expression of STAT3 target genes, as well as of other genes that promote survival. The gene array data also revealed cell cycle regulators and cell adhesion/junction component genes as possible mediator of Lapatinib resistance. Altogether, this study has identified several possible mechanisms of Lapatinib resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A subscale was developed to assess the quality of life of cancer patients with a life expectancy of six months or less. Phase I of this study identified the major concerns of 74 terminally ill cancer patients (19 with breast cancer, 19 with lung cancer, 18 with colorectal cancer, 9 with renal cell cancer, 9 with prostate cancer), 39 family caregivers, and 20 health care professionals. Patients interviewed were being treated at the University of Texas M. D. Anderson Cancer Center or at the Hospice at the Texas Medical Center in Houston. In Phase II, 120 patients (30 with breast cancer, 30 with lung cancer, 30 with colorectal cancer, 15 with prostate cancer, and 15 with renal cell cancer) rated the importance of these concerns for quality of life. Items retained for the subscale were rated as "extremely important" or "very important" by at least 60% of the sample and were reported as being applicable by at least two-thirds of the sample. The 61 concerns that were identified were formatted as a questionnaire for Phase III. In Phase III, 356 patients (89 with breast cancer, 88 with lung cancer, 88 with colorectal cancer, 44 with prostate cancer, and 47 with renal cell cancer) were interviewed to determine the subscale's reliability and sensitivity to change in clinical status. Both factor analysis and item response theory supported the inclusion of the same 35 items for the subscale. Internal consistency reliability was moderate to high for the subscale's domains: spiritual (0.87), existential (0.76), medical care (0.68), symptoms (0.67), social/family (0.66), and emotional (0.61). Test-retest correlation coefficients also were high for the domains: social/family (0.86), emotional (0.83), medical care (0.83), spiritual (0.75), existential (0.75), and symptoms (0.81).^ In addition, concurrent validity was supported by the high correlation between the subscale's symptom domain and symptom items from the European Organization for Research and Treatment of Cancer (EORTC) scale (r = 0.74). Patients' functional status was assessed with the Eastern Cooperative Oncology Group (ECOG) Performance status rating. When ECOG categories were compared to subscale domains, patients who scored lower in functional status had lower scores in the spiritual, existential, social/family, and emotional domains. Patients who scored lower in physical well-being had higher scores in the symptom domain. Patient scores in the medical care domain were similar for each ECOG category. The results of this study support the subscale's use in assessing quality of life and the outcomes of palliative treatment for cancer patients in their last six months of life. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retinoids such as all-trans-retinoic acid (ATRA) are promising agents for cancer chemoprevention and therapy. ATRA can cause growth inhibition, induction of differentiation and apoptosis of a variety of cancer cells. These effects are thought to be mediated by nuclear retinoids receptors which are involved in ligand-dependent transcriptional activation of downstream target genes. Using differential display, we identified several retinoic acid responsive genes in the head and neck squamous carcinoma cells and lung cancer cells, including tissue type transglutaminase, cytochrome P450-related retinoic acid hydroxylase, and a novel gene, designated RAIG1. RAIG1 has two transcripts of 2.4 and 6.8 kbp, respectively, that are generated by alternative selection of polyadenylation sites. Both transcripts have the same open reading frame that encodes a protein comprised of 357 amino acid residues. The deduced RAIG1 protein sequence contains seven transmembrane domains, a signature structure of G protein-coupled receptors. RAIG1 mRNA is expressed at high level in fetal and adult lung tissues. Induction of RAIG1 expression by ATRA is rapid and dose-dependent. A fusion protein of RAIG1 and the green fluorescent protein was localized in the cell surface membrane and perinuclear vesicles in transiently transfected cells. The locus for RAIG1 gene was mapped to a region between D12S358 and D12S847 on chromosome 12p12.3-p13. Our study of the novel retinoic acid induced gene RAIG1 provide evidence for a possible interaction between retinoid and G protein signaling pathways.^ We further examined RAIG1 expression pattern in a panel of 84 cancer cell lines of different origin. The expression level varies greatly from very high to non-detectable. We selected a panel of different cancer cells to study the effects of retinoids and other differentiation agents. We observed: (1) In most cases, retinoids (including all-trans retinoic acid, 4HPR, CD437) could induce the expression of RAIG-1 in cells from cancers of the breast, colon, head and neck, lung, ovarian and prostate. (2) Compare to retinoids, butyrate is often a more potent inducer of RAIG-1 expression in many cancer cells. (3) Butyrate, Phenylacetate butyrate, (R)P-Butyrate and (S)P-Butyrate have different impact on RAIG1 expression which varies among different cell lines. Our results indicate that retinoids could restore RAIG1 expression that is down-regulated in many cancer cells.^ A mouse homologous gene, mRAIG1, was cloned by 5$\sp\prime$ RACE reaction. mRAIG1 cDNA has 2105 bp and shares 63% identity with RAIG1 cDNA. mRAIG1 encodes a polypeptide of 356 amino acid which is 76% identity with RAIG1 protein. mRAIG1 protein also has seven transmembrane domains which are structurally identical to those of RAIG1 protein. Only one 2.2 kbp mRAIG1 transcript could be detected. The mRAIG1 mRNA is also highly expressed in lung tissue. The expression of mRAIG1 gene could be induced by ATRA in several mouse embryonal carcinoma cells. The induction of mRAIG1 expression is associated with retinoic acid-induced neuroectoderm differentiation of P19 cells. Similarity in cDNA and protein sequence, secondary structure, tissue distribution and inducible expression by retinoic acid strongly suggest that the mouse gene is the homologue of the human RAIG1 gene. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic exposure of the airways to cigarette smoke induces inflammatory response and genomic instability that play important roles in lung cancer development. Nuclear factor kappa B (NF-κB), the major intracellular mediator of inflammatory signals, is frequently activated in preneoplastic and malignant lung lesions. ^ Previously, we had shown that a lung tumor suppressor GPRC5A is frequently repressed in human non-small cell lung cancers (NSCLC) cells and lung tumor specimens. Recently, other groups have shown that human GPRC5A transcript levels are higher in bronchial samples of former than of current smokers. These results suggested that smoking represses GPRC5A expression and thus promotes the occurrence of lung cancer. We hypothesized that cigarette smoking or associated inflammatory response repressed GPRC5A expression through NF-κB signaling. ^ To determine the effect of inflammation, we examined GPRC5A protein expression in several lung cell lines following by TNF-α treatment. TNF-α significantly suppressed GPRC5A expression in normal small airway epithelial cells (SAEC) as well as in Calu-1 cells. Real-time PCR analysis indicated that TNF-α inhibits GPRC5A expression at the transcriptional level. NF-κB, the major downstream effectors of TNF-α signaling, mediates TNF-α-induced repression of GPRC5A because over-expression of NF-κB suppressed GPRC5A. To determine the region in the GPRC5A promoter through which NF-κB acts, we examined the ability of TNF-α to inhibit a series of reporter constructs with different deletions of GPRC5A promoter. The luciferase assay showed that the potential NF-κB binding sites containing region are irresponsible for TNF-α-induced suppression. Further analysis using constructs with different deletions in p65 revealed that NF-κB-mediated repression of GPRC5A is transcription-independent. Co-immunoprecipitation assays revealed that NF-κB could form a complex with RAR/RXR heterodimer. Moreover, the inhibitory effect of NF-κB has been found to be proportional to NF-κB/RAR ratio in luciferase assay. Finally, Chromatin IP demonstrated that NF-κB/p65 bound to GPRC5A promoter as well as RAR/RXR and suppressed transcription. Taken together, we propose that inflammation-induced NF-κB activation disrupts the RA signaling and suppresses GPRC5A expression and thus contributes to the oncogenesis of lung cancer. Our studies shed new light on the pathogenesis of lung cancer and potentially provide novel interventions for preventing and treating this disease. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor invasion and angiogenesis. Secretion of MMP-9 has been reported in various cancer types including lung cancer, brain cancer, colon cancer, and breast cancer. Heregulin is a growth factor that regulates growth and differentiation of normal breast cells as well as mammary tumor cells. To study the role of heregulin in breast cancer metastasis, we tested whether heregulin may regulate MMP-9 secretion. By screening a panel of breast cancer cell line for their ability to respond to heregulin and produce MMP-9, we have found that MMP-9 secretion can be induced by heregulin-β1 in two breast cancer cell lines, SKBr3 and MCF-7. In both cell lines, increase of MMP-9 activity as shown by zymography was accompanied by increased protein level as well as mRNA level of MMP-9. Using a reporter luciferase assay, we have identified that proximal −670bp promoter of MMP-9 had similar activity to a 2.2kb MMP-9 promoter in response to heregulin stimulation. Heregulin treatment of SKBr3 and MCF-7 activated multiple signaling pathways inside cells. These include the Erk pathway, the p38 kinase pathway, PKC pathway, and PI-3K pathway. To examine which pathways are involved in MMP-9 activation by heregulin, we have used a panel of chemical inhibitors to specifically inhibit each one of these pathways. Ro-31-8220 (PKC inhibitor) and SB203580 (p38 kinase inhibitor) completely blocked heregulin activation of MMP-9. On the other hand, PD098059 (MEK-1 inhibitor) partially blocked MMP-9 activation, whereas PI-3K inhibitor, wortmannin, had no effect. Therefore, at least three signaling pathways are involved in activation of MMP-9 by heregulin. Since MMP-9 is tightly associated with metastatic potential, our study also suggests that heregulin may enhance breast tumor metastasis through induction of MMP-9 expression. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Amplification or overexpression of HER-2/neu has been demonstrated in human cancers of the ovary, breast, lung and correlated with chemoresistance and poor clinic prognosis. We have previously found that the adenovirus type 5 early region 1A (E1A) gene product can repress the overexpression and suppress the tumorigenic potential of HER-2/neu-overexpressing cancer cells. In addition, E1A has been reported to induce apoptosis and inhibit the metastatic potential of tumor cells. Therefore, E1A could be considered as a tumor suppressor gene in HER-2/neu-overexpressing cancer cells. To develop an efficient HER-2/neu-targeting gene therapy with E1A, adenoviral vector or cationic liposome was used to introduce E1A into human ovarian, breast and lung cancer cells. Successful therapeutic effects were achieved.^ A replication-deficient adenovirus containing the E1A gene, Ad.E1A(+), was used to infect HER-2/neu-overexpressing human ovarian cancer cell line. Ovarian cancer growth in vitro and colony formation in soft agarose were greatly inhibited.^ To examine tumor suppressor function of E1A in breast cancer, we introduced E1A in vitro by adenovirus into both HER-2/neu-overexpressing and low-expressing human breast cancer cell lines. In HER-2/neu-overexpressing cells, E1A greatly inhibited tumor cell growth in vitro and colony formation in soft agarose. However, in low HER-2/neu expressing cancer cell lines, E1A could only reduce colony formation in soft agarose but had no significant effect on cell growth in monolayer, indicating different effects of E1A in these two types of cancer cells. To test the local therapeutic efficacy of E1A, we used either adenovirus- or liposome-mediated E1A gene delivery systems in an orthotopic breast cancer animal model.^ To test the therapeutic efficacy of systemically-delivered E1A in vivo lung cancer, we treated mice bearing intratracheal lung cancer by i.v. tail injections of Ad.E1A(+). As a result, Ad.E1A(+) suppressed HER-2/neu overexpression and inhibited intratracheal lung cancer growth. However, no significant tumor suppression effect of Ad.E1A(+) was observed in mice bearing HER-2/neu low expressing cell line when the same therapeutic procedure was followed. (Abstract shortened by UMI.) ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The geographic distribution of average annual age-adjusted mortality rates (1964-1976) for four types of cancer (all cancer sites combined, gastrointestinal, urinary, and lung cancer) were compared by sources of drinking water for 254 Texas counties and county rural areas and 301 Texas cities. Exposure variables considered were surface versus ground water, public water supplies versus individuals wells, and trihalomethane levels in municipal water supplies. Each general source of "surface" and "ground" water was further divided by aggregating ground water using areas by aquifers and surface water using study areas by river basins. Potential confounding variables taken into account included median education, employment in cancer risk industries, population mobility, ethnicity, and urbanicity. A pattern of higher and lower cancer mortality rates was found for populations using some aquifers and river basins. Further study is required to determine whether the differences in cancer mortality rates that were observed are related to drinking water content or are coincidental with differences in personal characteristics which could not be taken into account in this ecologic study design. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is an obvious carcinogen for lung cancer. Since CBMN (Cytokinesis-blocked micronucleus) has been found to be extremely sensitive to NNK-induced genetic damage, it is a potential important factor to predict the lung cancer risk. However, the association between lung cancer and NNK-induced genetic damage measured by CBMN assay has not been rigorously examined. ^ This research develops a methodology to model the chromosomal changes under NNK-induced genetic damage in a logistic regression framework in order to predict the occurrence of lung cancer. Since these chromosomal changes were usually not observed very long due to laboratory cost and time, a resampling technique was applied to generate the Markov chain of the normal and the damaged cell for each individual. A joint likelihood between the resampled Markov chains and the logistic regression model including transition probabilities of this chain as covariates was established. The Maximum likelihood estimation was applied to carry on the statistical test for comparison. The ability of this approach to increase discriminating power to predict lung cancer was compared to a baseline "non-genetic" model. ^ Our method offered an option to understand the association between the dynamic cell information and lung cancer. Our study indicated the extent of DNA damage/non-damage using the CBMN assay provides critical information that impacts public health studies of lung cancer risk. This novel statistical method could simultaneously estimate the process of DNA damage/non-damage and its relationship with lung cancer for each individual.^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tumor necrosis factor (TNF)-Receptor Associated Factors (TRAFs) are a family of signal transducer proteins. TRAF6 is a unique member of this family in that it is involved in not only the TNF superfamily, but the toll-like receptor (TLR)/IL-1R (TIR) superfamily. The formation of the complex consisting of Receptor Activator of Nuclear Factor κ B (RANK), with its ligand (RANKL) results in the recruitment of TRAF6, which activates NF-κB, JNK and MAP kinase pathways. TRAF6 is critical in signaling with leading to release of various growth factors in bone, and promotes osteoclastogenesis. TRAF6 has also been implicated as an oncogene in lung cancer and as a target in multiple myeloma. In the hopes of developing small molecule inhibitors of the TRAF6-RANK interaction, multiple steps were carried out. Computational prediction of hot spot residues on the protein-protein interaction of TRAF6 and RANK were examined. Three methods were used: Robetta, KFC2, and HotPoint, each of which uses a different methodology to determine if a residue is a hot spot. These hot spot predictions were considered the basis for resolving the binding site for in silico high-throughput screening using GOLD and the MyriaScreen database of drug/lead-like compounds. Computationally intensive molecular dynamics simulations highlighted the binding mechanism and TRAF6 structural changes upon hit binding. Compounds identified as hits were verified using a GST-pull down assay, comparing inhibition to a RANK decoy peptide. Since many drugs fail due to lack of efficacy and toxicity, predictive models for the evaluation of the LD50 and bioavailability of our TRAF6 hits, and these models can be used towards other drugs and small molecule therapeutics as well. Datasets of compounds and their corresponding bioavailability and LD50 values were curated based, and QSAR models were built using molecular descriptors of these compounds using the k-nearest neighbor (k-NN) method, and quality of these models were cross-validated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ECM of epithelial carcinomas undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How tumors maintain ECM integrity in the face of dynamic biophysical forces is still largely unclear. This study addresses these deficiencies using mouse models of human lung adenocarcinoma. Spontaneous lung tumors were marked by disorganized basement membranes, dense collagen networks, and increased tissue stiffness. Metastasis-prone lung adenocarcinoma cells secreted fibulin-2 (Fbln2), a matrix glycoprotein involved in ECM supra-molecular assembly. Fibulin-2 depletion in tumor cells decreased the intra-tumoral abundance of matrix metalloproteinases and reduced collagen cross-linking and tumor compressive properties resulting in inhibited tumor growth and metastasis. Fbln2 deposition within intra-tumoral fibrotic bands was a predictor of poor clinical outcome in patients. Collectively, these findings support a feed-forward model in which tumor cells secrete matrix-stabilizing factors required for the assembly of ECM that preferentially favors malignant progression. To our knowledge, this is the first evidence that tumor cells directly regulate the integrity of their surrounding matrix through the secretion of matrix-stabilizing factors such as fibulin-2. These findings open a new avenue of research into matrix assembly molecules as potential therapeutic targets in cancer patients.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Many tumors arise from sites of inflammation providing evidence that innate immunity is a critical component in the development and progression of cancer. Neutrophils are primary mediators of the innate immune response. Upon activation, an important function of neutrophils is release of an assortment of proteins from their granules including the serine protease neutrophil elastase (NE). The effect of NE on cancer has been attributed primarily to its ability to degrade the extracellular matrix thereby promoting invasion and metastasis. Recently, it was shown that NE could be taken up by lung cancer cells leading to degradation of insulin receptor substrate-1 thereby promoting hyperactivity of the phosphatidylinositol-3 kinase (PI3K) pathway and tumor cell proliferation. To our knowledge, nobody has investigated uptake of NE by other tumor types. In addition, NE has broad substrate specificity suggesting that uptake of NE by tumor cells could impact processes regulating tumorigenensis other than activation of the PI3K pathway. Neutrophil elastase has been identified in breast cancer specimens where high levels of NE have prognostic significance. These studies have assessed NE levels in whole tumor lysates. Because the major source of NE is from activated neutrophils, we hypothesized that breast cancer cells do not have endogenous NE but may take up NE released by tumor associated neutrophils in the tumor microenvironment and that this could provide a link between the innate immune response to tumors and specific adaptive immune responses. In this thesis, we show that breast cancer cells lack endogenous NE expression and that they are able to take up NE resulting in increased generation of low molecular weight cyclin E (CCNE) and enhanced susceptibility to lysis by CCNE-specific cytotoxic T lymphocytes. We also show that after taking up NE and proteinase 3 (PR3), a second primary granule protease with significant homology to NE, breast cancer cells cross-present the NE- and PR3-derived peptide PR1 rendering them susceptible to PR1-targeted therapies. Taken together, our data support a role for NE uptake in modulating adaptive immune responses against breast cancer.