33 resultados para United States. Animal and Plant Health Inspection Service Officials and employees
Resumo:
Background and aim. Hepatitis B virus (HBV) and hepatitis C virus (HCV) co-infection is associated with increased risk of cirrhosis, decompensation, hepatocellular carcinoma, and death. Yet, there is sparse epidemiologic data on co-infection in the United States. Therefore, the aim of this study was to determine the prevalence and determinants of HBV co-infection in a large United States population of HCV patients. ^ Methods. The National Veterans Affairs HCV Clinical Case Registry was used to identify patients tested for HCV during 1997–2005. HCV exposure was defined as two positive HCV tests (antibody, RNA or genotype) or one positive test combined with an ICD-9 code for HCV. HCV infection was defined as only a positive HCV RNA or genotype. HBV exposure was defined as a positive test for hepatitis B core antibodies, hepatitis B surface antigen, HBV DNA, hepatitis Be antigen, or hepatitis Be antibody. HBV infection was defined as only a positive test for hepatitis B surface antigen, HBV DNA, or hepatitis Be antigen within one year before or after the HCV index date. The prevalence of exposure to HBV in patients with HCV exposure and the prevalence of HBV infection in patients with HCV infection were determined. Multivariable logistic regression was used to identify demographic and clinical determinants of co-infection. ^ Results. Among 168,239 patients with HCV exposure, 58,415 patients had HBV exposure for a prevalence of 34.7% (95% CI 34.5–35.0). Among 102,971 patients with HCV infection, 1,431 patients had HBV co-infection for a prevalence of 1.4% (95% CI 1.3–1.5). The independent determinants for an increased risk of HBV co-infection were male sex, positive HIV status, a history of hemophilia, sickle cell anemia or thalassemia, history of blood transfusion, cocaine and other drug use. Age >50 years and Hispanic ethnicity were associated with a decreased risk of HBV co-infection. ^ Conclusions. This is the largest cohort study in the United States on the prevalence of HBV co-infection. Among veterans with HCV, exposure to HBV is common (∼35%), but HBV co-infection is relatively low (1.4%). There is an increased risk of co-infection with younger age, male sex, HIV, and drug use, with decreased risk in Hispanics.^
Resumo:
This investigation compares two different methodologies for calculating the national cost of epilepsy: provider-based survey method (PBSM) and the patient-based medical charts and billing method (PBMC&BM). The PBSM uses the National Hospital Discharge Survey (NHDS), the National Hospital Ambulatory Medical Care Survey (NHAMCS) and the National Ambulatory Medical Care Survey (NAMCS) as the sources of utilization. The PBMC&BM uses patient data, charts and billings, to determine utilization rates for specific components of hospital, physician and drug prescriptions. ^ The 1995 hospital and physician cost of epilepsy is estimated to be $722 million using the PBSM and $1,058 million using the PBMC&BM. The difference of $336 million results from $136 million difference in utilization and $200 million difference in unit cost. ^ Utilization. The utilization difference of $136 million is composed of an inpatient variation of $129 million, $100 million hospital and $29 million physician, and an ambulatory variation of $7 million. The $100 million hospital variance is attributed to inclusion of febrile seizures in the PBSM, $−79 million, and the exclusion of admissions attributed to epilepsy, $179 million. The former suggests that the diagnostic codes used in the NHDS may not properly match the current definition of epilepsy as used in the PBMC&BM. The latter suggests NHDS errors in the attribution of an admission to the principal diagnosis. ^ The $29 million variance in inpatient physician utilization is the result of different per-day-of-care physician visit rates, 1.3 for the PBMC&BM versus 1.0 for the PBSM. The absence of visit frequency measures in the NHDS affects the internal validity of the PBSM estimate and requires the investigator to make conservative assumptions. ^ The remaining ambulatory resource utilization variance is $7 million. Of this amount, $22 million is the result of an underestimate of ancillaries in the NHAMCS and NAMCS extrapolations using the patient visit weight. ^ Unit cost. The resource cost variation is $200 million, inpatient is $22 million and ambulatory is $178 million. The inpatient variation of $22 million is composed of $19 million in hospital per day rates, due to a higher cost per day in the PBMC&BM, and $3 million in physician visit rates, due to a higher cost per visit in the PBMC&BM. ^ The ambulatory cost variance is $178 million, composed of higher per-physician-visit costs of $97 million and higher per-ancillary costs of $81 million. Both are attributed to the PBMC&BM's precise identification of resource utilization that permits accurate valuation. ^ Conclusion. Both methods have specific limitations. The PBSM strengths are its sample designs that lead to nationally representative estimates and permit statistical point and confidence interval estimation for the nation for certain variables under investigation. However, the findings of this investigation suggest the internal validity of the estimates derived is questionable and important additional information required to precisely estimate the cost of an illness is absent. ^ The PBMC&BM is a superior method in identifying resources utilized in the physician encounter with the patient permitting more accurate valuation. However, the PBMC&BM does not have the statistical reliability of the PBSM; it relies on synthesized national prevalence estimates to extrapolate a national cost estimate. While precision is important, the ability to generalize to the nation may be limited due to the small number of patients that are followed. ^