55 resultados para Unfolded protein response


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The molecular complex containing the seven transmembrane helix photoreceptor S&barbelow;ensory R&barbelow;hodopsin I&barbelow; (SRI) and transducer protein HtrI (H&barbelow;alobacterial Transducer for SRI&barbelow;) mediates color-sensitive phototaxis responses in the archaeon Halobacterium salinarum. Orange light causes an attractant response by a one-photon reaction and white light (orange + UV light) a repellent response by a two-photon reaction. Three aspects of SRI-HtrI structure/function and the signal transduction pathway were explored. First, the coupling of HtrI to the photoactive site of SRI was analyzed by mutagenesis and kinetic spectroscopy. Second, SRI-HtrI mutations and suppressors were selected and characterized to elucidate the color-sensing mechanism. Third, the signal relay through the transducer-bound histidine kinase was analyzed using an in vitro reconstitution system with known and newly identified taxis components. ^ Twenty-one mutations on HtrI were introduced by site-directed mutagenesis. Several replacements of charged residues perturbed the photochemical kinetics of SRI which led to the finding of a cluster of residues at the membrane/cytoplasm interface in HtrI electrostatically coupled to the photoactive site of SRI. We found by laser-flash kinetic spectroscopy that the transducer and these residues have specific effects on the light-induced proton transfer between the retinal chromophore and the protein. ^ One of the mutations showed an unusual mutant phenotype we called “inverted” signaling, in which the cell produces a repellent response to normally attractant light. Therefore, this mutant (E56Q of HtrI) had lost the color-discrimination by the SRI-HtrI complex. We used suppressor analysis to better understand the phenotype. Certain suppressors resulted in return of attractant responses to orange light but with inversion of the normally repellent response to white light to an attractant response. To explain this and other results, we formulated the Conformational Shuttling model in which the HtrI-SRI complex is poised in a metastable equilibrium of two conformations shifted in opposite directions by orange and white light. We tested this model by behavioral analysis (computerized cell tracking and motion study) of double mutants of inverting and suppressing mutations and the results confirmed the equilibrium-shift explanation. ^ We developed an in vitro system for measuring the effect of purified transducer on the histidine-kinase CheAH that controls the flagellar motor switch. The rate of kinase autophosphorylation was stimulated >2 fold in the reconstitution of the complete signal transduction system from purified components from H. salinarum. The in vitro assay also showed that the kinase activity was reduced in the absence and in the presence of high levels of linker protein CheWH. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrophysiological studies were conducted to test the hypothesis that alterations in intestinal epithelial function are associated with immunological responses directed against the enteric parasite, Trichinella spirals. Trichinella antigens were used to challenge sensitized jejunum from infected guinea pigs while monitoring ion transport properties of the tissue in an Ussing-type chamber. The addition of antigen caused increases in transepithelial PD and I(,sc) that were rapidly induced, peaked at 1.5 to 2 min after antigen-challenge, and lasted 10 to 20 min thereafter. The increase in I(,sc) ((DELTA)I(,sc)) varied in a dose-dependent manner until a maximal increase of 40 (mu)A/cm('2) was obtained by the addition of 13 (mu)g of antigenic protein per ml of serosal fluid in the Ussing chamber. Trichinella antigen did not elicit alterations in either PD or I(,sc) of nonimmune tissue. Jejunal tissue from guinea pigs immunized with ovalbumin according to a protocol that stimulated homocytotropic antibody production responded electrically to challenge with ovalbumin but not trichinella antigen. Jejunal tissue which was passively sensitized with immune serum having a passive cutaneous anaphylaxis (PCA) titer of 32 for both IgE and IgG(,1) anti-trichinella anti-bodies responded electrically after exposure to trichinella antigen. Heat treatment of immune serum abolished the anti-trichinella IgE titer as determined by the PCA test but did not decrease either the electrical response of passively sensitized tissue to antigen or the anaphylactically mediated intestinal smooth muscle contractile response to antigen in the classical Schultz-Dale assay. These results strongly support the hypothesis that immunological responses directed against Trichinella Spiralis alter intestinal epithelial function and suggest that immediate hypersensitivity is the immunological basis of the response.^ Additional studies were performed to test the hypothesis that histamine and prostaglandins that are released from mucosal mast cells during IgE or IgG(,1) - antigen stimulated degranulation mediate electrophysiological changes in the intestinal epithelium that are reflective of Cl('-) secretion and mediated intracellularly by cAMP. Pharmacological and biochemical studies were performed to determine the physiological messengers and ionic basis of electrical alterations in small intestinal epithelium of the guinea pig during in vitro anaphylaxis. Results suggest that Cl('-) secretion mediated, in part, by cAMP contributes to antigen-induced jejunal ion transport changes and that histamine and prostaglandins are involved in eliciting epithelial responses. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hematopoietic growth factors play important roles in regulating blood cell growth and development in vivo. In this work, we investigated the signaling mechanisms of two growth factors with clinical significance, erythropoietin (Epo) and granulocyte colony-stimulating factor (G-CSF). Epo is essential for the survival, proliferation and differentiation of red blood cell progenitors, while G-CSF plays an important role in controlling mature neutrophil production. To identify which amino acid(s) and/or motif in EpoR is responsible for cell survival, wild type or mutant EpoR isoforms were transfected into the growth factor-dependent 32D cell line. Proliferation and apoptosis assays demonstrated that an EpoR isoform that lacks intracellular tyrosine residues and is truncated after 321 amino acids in the cytoplasmic tail (EpoR 1-321) mediates Epo-dependent cell survival. Furthermore, in absence of fetal calf serum (FCS), Epo signaling through wild type or mutant receptors supported anti-apoptosis, but not proliferation during 72 hours in response to Epo. To investigate the signaling pathway by which EpoR regulates cell survival, a dominant negative Stat5b (dnStat5b) isoform was generated and coexpressed with EpoR in stable cell lines. Expression of dnStat5b causes a significant induction of apoptosis in the presence of Epo in cells expressing EpoR 1-321, indicating that Stat5 is essential for survival signaling through tyrosine independent sequences in the EpoR. In a second project to investigate G-CSF signaling, we studied mechanisms by which G-CSF regulates the expression of PU.1, an important transcription factor in myeloid and B cell development. We demonstrated, by immunoblot and real time RT-PCR, that PU.1 is induced by G-CSF ex vivo as well as in vivo. To test whether G-CSF signaling through Stat3 is required for PU.1 regulation, the upstream region of the PU.1 gene was analyzed for potential Stat3 binding motifs. Four potential sites were identified; chromatin immunoprecipitations demonstrated that G-CSF activated Stat3 binds to 3 of the 4 binding motifs. In addition, PU.1 induction by G-CSF was completely abrogated in bone marrow from hematopoietic conditional Stat3 knockout mice. These results indicate an important role for Stat3 in G-CSF-dependent PU.1 gene regulation. Collectively, our works demonstrate that Stat protein play important and diverse roles in hematopoietic growth factor signaling. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CYP4F subfamily comprises a group of enzymes that metabolize LTB4 to biologically less active metabolites. These inactive hydroxy products are incapable of chemotaxis and recruitment of inflammatory cells. This has led to a hypothesis that CYP4Fs may modulate inflammatory conditions serving as a signal of resolution. ^ We investigated the regulation of rat CYP4F gene expression under various inflammatory prompts including a bacterial lipopolysaccharide (LPS) treated model system, controlled traumatic brain injury (TBI) model as well as using direct cytokine challenges. CYP4Fs showed an isoform specific response to LPS. The pro-inflammatory cytokines IL-1β, IL-6 and TNF-α produced an overall inductive CYP4F response whereas IL-10, an anti-inflammatory cytokine, suppressed CYP4F gene expression in primary hepatocytes. The molecular mechanism behind IL-6 mediated CYP4F induction was partially STAT3 dependent. ^ An alternate avenue of triggering the inflammatory cascade is TBI, which is known to cause several secondary effects leading to multiorgan dysfunction syndrome. The results from this study elicited that trauma to the brain can produce acute inflammatory changes in organs distant from the injury site. Local production of LTB4 after CNS injury caused mobilization of inflammatory cells such as neutrophils to the lung. In the resolution phase, CYP4F expression increased with time along with the associated activity causing a decline in LTB4 concentration. This marked a significant reduction in neutrophil recruitment to the lung which led to subsequent recovery and repair. In addition, we showed that CYP4Fs are localized primarily in pulmonary endothelium. We speculate that the temporally regulated LTB4 clearance in the endothelium may be a novel target for treatment of pulmonary inflammation following injury. ^ In humans, several CYP4F isoforms have been identified and shown to metabolize LTB4 and other endogenous eicosanoids. However, the specific activity of the recently cloned human CYP4F11 is unknown. In the final part of this thesis, CYP4F11 protein was expressed in yeast in parallel to CYP4F3A. To our surprise, CYP4F11 displayed a different substrate profile than CYP4F3A. CYP4F3A metabolized eicosanoids while CYP4F11 was a better catalyst for therapeutic drugs. Thus, besides their endogenous function in clearing inflammation, CYP4Fs also may play a part in drug metabolism. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ecteinascidin 743 (Et-743), which is a novel DNA minor groove alkylator with a unique spectrum of antitumor activity, is currently being evaluated in phase II/III clinical trials. Although the precise molecular mechanisms responsible for the observed antitumor activity are poorly understood, recent data suggests that post-translational modifications of RNA polymerase II Large Subunit (RNAPII LS) may play a central role in the cellular response to this promising anticancer agent. The stalling of an actively transcribing RNAPII LS at Et-743-DNA adducts is the initial cellular signal for transcription-coupled nucleotide excision repair (TC-NER). In this manner, Et-743 poisons TC-NER and produces DNA single strand breaks. Et-743 also inhibits the transcription and RNAPII LS-mediated expression of selected genes. Because the poisoning of TC-NER and transcription inhibition are critical components of the molecular response to Et-743 treatment, we have investigated if changes in RNAPII LS contribute to the disruption of these two cellular pathways. In addition, we have studied changes in RNAPII LS in two tumors for which clinical responses were reported in phase I/II clinical trials: renal cell carcinoma and Ewing's sarcoma. Our results demonstrate that Et-743 induces degradation of the RNAPII LS that is dependent on active transcription, a functional 26S proteasome, and requires functional TC-NER, but not global genome repair. Additionally, we have provided the first experimental data indicating that degradation of RNAPII LS might lead to the inhibition of activated gene transcription. A set of studies performed in isogenic renal carcinoma cells deficient in von Hippel-Lindau protein, which is a ubiquitin-E3-ligase for RNAPII LS, confirmed the central role of RNAPII LS degradation in the sensitivity to Et-743. Finally, we have shown that RNAPII LS is also degraded in Ewing's sarcoma tumors following Et-743 treatment and provide data to suggest that this event plays a role in decreased expression of the Ewing's sarcoma oncoprotein, EWS-Fli1. Altogether, these data implicate degradation of RNAPII LS as a critical event following Et-743 exposure and suggest that the clinical activity observed in renal carcinoma and Ewing's sarcoma may be mediated by disruption of molecular pathways requiring a fully functional RNAPII LS. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The baker's yeast, Saccharomyces cerevisiae responds to the cytotoxic effects of elevated temperature (37-42°C) by activating transcription of ∼150 genes, termed heat shock genes, collectively required to compensate for the abundance of misfolded and aggregated proteins and various physiological modifications necessary for the cell to survive and grow at heat shock temperatures. An intriguing facet of the yeast heat shock response is the remarkable similarity it shares with the global remodeling that occurs in mammalian cells in response to numerous pathophysiological conditions including cancer and cardiovascular disease and thus provides an ideal model system. I have therefore investigated several novel features of stress signaling, transcriptional regulation, and physiology. Initial work focused on the characterization of SYM1, a novel heat shock gene in yeast which was demonstrated to be required for growth on the nonfermentable carbon source ethanol at elevated temperature, and to be the functional ortholog of the mammalian kidney disease gene, Mpv17. Additional work addressed the role of two proteins, the Akt-related kinase, Sch9, and Sse1, the yeast Hsp110 protein chaperone homolog, in signaling by protein kinase A, establishing Sse1 as a critical negative regulator of this pathway. Furthermore, I have demonstrated a role for Sse1 in biogenesis and stability of the stress-response transcription factor, Msn2; a finding that has been extended to include a select subset of additional high molecular weight proteins, suggesting a more global role for this chaperone in stabilizing the cellular proteome. The final emphasis of my doctoral work has included the finding that celastrol, a compound isolated from the plant family Celasfraceae, a component of traditional Chinese herbal medicine, can activate heat shock transcription factor (Hsf1) in yeast and mammalian cells through an oxidative stress mechanism. Celastrol treatment simultaneously activates both heat shock and oxidative stress response pathways, resulting in increased cytoprotection. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bloom syndrome (BS) is an autosomal recessive disorder characterized by dwarfism, immunodeficiency, impaired fertility, and most importantly, early development of a broad range of cancers. The hallmark of BS cells is hyper-recombination, characterized by a drastically elevated frequency of sister chromatid exchange (SCE). BLM, the gene mutated in BS, encodes a DNA helicase of the RecQ protein family. BLM is thought to participate in several DNA transactions and to interact with many proteins involved in DNA replication, recombination, and repair. However, the precise function of BLM and the BLM-dependent anti-tumor mechanism remain obscure. ^ A novel protein, BLAP75 (BLM-associated polypeptide, 75KD), was identified to form an evolutionarily conserved complex with BLM and DNA topoisomerase IIIα (Topo IIIα). Our work demonstrates that loss of BLAP75 destabilized BLM and Topo IIIα proteins. BLAP75 colocalized with BLM in subnuclear foci in response to DNA damage and the recruitment of BLM to these foci was BLAP75-dependent. Moreover, depletion of BLAP75 by siRNA resulted in an elevated SCE rate similar to cells depleted of BLM by siRNA. In addition, RNAi-mediated silencing of BLAP75 greatly diminished cell viability. This cellular deficiency was rescued by expression of wild type BLAP75 but not BLAP75 with mutated conserved domain III, which abrogated the interaction between BLAP75, BLM and Topo IIIα, suggesting that the integrity of BLM-Topo IIIα-BLAP75 complex might be critical for cell survival. Finally, I found that BLAP75 was phosphorylated during mitosis and upon various DNA-damaging agents, implying that BLAP75 might also function in mitosis and DNA damage response. ^ Taken together, this study has defined BLAP75 as an integral component of the BLM complex to maintain genome stability. Our findings provide insights into the molecular mechanisms of the BLM helicase pathway and tumorigenesis process associated with these mechanisms. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ends of eukaryotic chromosomes are protected by specialized ribonucleoprotein structures termed telomeres. Telomeres protect chromosomes from end-to-end fusions, inappropriate repair and degradation. Disruption of this complex activates an ATM/ATR DNA damage response (DDR) pathway. One component of the complex is the Protection Of Telomeres 1 (POT1) protein, an evolutionarily conserved protein which binds single-stranded 3' overhang and is required for both chromosomal end protection and telomere length regulation. The mouse contains two POT1 orthologs, Pot1a and Pot1b. Here we show that both proteins colocalize with telomeres through interaction with the adapter protein TPP1. In addition, compared to Pot1a, the OB-folds of Pot1b possess less sequence specificity for telomeres. Disruption of POT1 proteins result in telomere dysfunction and activation of an ATR-dependent DDR at telomeres, suggesting that this response is normally suppressed by POT1 binding to the single-stranded G-overhang. ^ Telomeres are maintained by telomerase, and its absence in somatic cells results in telomere progressive loss that triggers the activation of p53. Telomere dysfunction initiates genomic instability and induces both p53-dependent replicative senescence and apoptosis to suppress tumorigenesis. In the absence of functional p53, this genomic instability promotes cancer. It was previously not known which aspect of the p53 dependent DNA damage response is important to suppress tumorigenesis initiated by dysfunctional telomeres. The p53R172P knock-in mouse, which is unable to induce apoptosis but retains intact cell cycle arrest/cellular senescence pathways, allowed us to examine whether p53-dependent apoptosis is a major tumor suppression pathway initiated in the setting of telomere dysfunction. Spontaneous tumorigenesis remains potently suppressed in late generation telomerase null mice possessing the p53P/P mutation. These results suggest that suppression of spontaneous tumorigenesis initiated by dysfunctional telomeres requires activation of a p53-dependent senescence pathway. In addition, we used another knock-in mouse model with a p53R172H (p53H) point mutation to test the hypothesis that telomere dysfunction promotes chromosomal instability and accelerates the onset of tumorigenesis in vivo in the setting of this most common gain-of-function mutation in the human Li Fraumeni cancer syndrome. We unexpectedly observed that telomerase null mice possessing dysfunctional telomeres in the setting of the p53H/+ mutation develop significantly fewer tumors, die prematurely and exhibit higher level of cellular senescence, apoptosis and elevated genomic instability compared to telomerase intact p53H/+ and telomerase null p53+/+ mice. These contrasting results thus link cancer and aging to the functional status of telomeres and the integrity of the p53 pathway. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disruption of the mechanisms that regulate cell-cycle checkpoints, DNA repair, and apoptosis results in genomic instability and often leads to the development of cancer. In response to double stranded breaks (DSBs) as induced by ionizing radiation (IR), generated during DNA replication, or through immunoglobulin heavy chain (IgH) rearrangements in T and B cells of lymphoid origin, the protein kinases ATM and ATR are central players that activate signaling pathways leading to DSB repair. p53 binding protein 1 (53BP1) participates in the repair of DNA double stranded breaks (DSBs) where it is recruited to or near sites of DNA damage. In addition to its well established role in DSB repair, multiple lines of evidence implicate 53BP1 in transcription which stem from its initial discovery as a p53 binding protein in a yeast two-hybrid screen. However, the mechanisms behind the role of 53BP1 in these processes are not well understood. ^ 53BP1 possesses several motifs that are likely important for its role in DSB repair including two BRCA1 C-terminal repeats, tandem Tudor domains, and a variety of phosphorylation sites. In addition to these motifs, we identified a glycine and arginine rich region (GAR) upstream of the Tudor domains, a sequence that is oftentimes serves as a site for protein arginine methylation. The focus of this project was to characterize the methylation of 53BP1 and to evaluate how methylation influenced the role of 53BP1 as a tumor suppressor. ^ Using a variety of biochemical techniques, we demonstrated that 53BP1 is methylated by the PRMT1 methyltransferase in vivo. Moreover, GAR methylation occurs on arginine residues in an asymmetric manner. We further show that sequences upstream of the Tudor domains that do not include the GAR stretch are sufficient for 53BP1 oligomerization in vivo. While investigating the role of arginine methylation in 53BP1 function, we discovered that 53BP1 associates with proteins of the general transcription apparatus as well as to other factors implicated in coordinating transcription with chromatin function. Collectively, these data support a role for 53BP1 in regulating transcription and provide insight into the possible mechanisms by which this occurs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tuberculosis remains one of the leading causes of death in man due to a single infectious agent. An estimated one-third of the world's population is infected with the causative agent, Mycobacterium tuberculosis (Mtb), despite the availability of the widely used vaccine, BCG. BCG has significantly varying protection rates with the lowest level of protection seen with the most common form of TB, adult pulmonary TB. Thus, numerous studies are being conducted to develop a more efficient vaccine. The ideal candidate vaccine would possess the ability to induce a solid and strong Th1 response, as this is the subset of T cells primarily involved in clearance of the infection. A novel vaccine should also induce such a response that may be recalled and expanded upon subsequent infection. Our group has introduced a mutant of a virulent strain of Mtb which lacks a component of the immunogenic antigen 85 complex (Ag85). Our vaccine, ΔfbpA, does not secrete the fibronectin binding protein Ag85A, and this has shown to lead to its attenuation in both murine macrophages and mice. Previous studies have also proven that ΔfbpA is more protective in mice than BCG against virulent aerosol challenge with Mtb. This study addresses the mechanisms of protection observed with ΔfbpA by phenotyping responding T cells. We first evaluated the ability of dendritic cells to present the mycobacteria to naïve T cells, an in vitro mock of primary immunization. We also measured the response of primed T cells to macrophage-presented mycobacteria to interpret the possible response of a vaccinated host to a boost. We concluded that ΔfbpA can elicit a stronger Th1 response compared to BCG in vitro, and further observed that this enhanced response is at least partly due to the presence of proteins encoded by a region of the genome absent in all strains of BCG. Finally, we observed this heightened Th1 response in the mouse model after primary vaccination and a virulent aerosol challenge. The cytolytic T cell response was also measured after virulent challenge and was found to be superior in the ΔfbpA-treated group when compared to the BCG group. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Imatinib mesylate, a selective inhibitor of KIT, PDGFR, and Abl kinases, has shown significant success as a therapy for patients with advanced gastrointestinal stromal tumors (GISTs). However, the underlying mechanisms of imatinib-induced cytotoxicity are not well understood. Using gene expression profiling and real-time PCR for target validation, we identified insulin-like growth factor binding protein-3 (IGFBP3) to be to be up-regulated after imatinib treatment in imatinib-sensitive GISTs. IGFBP3 is a multifunctional protein that regulates cell proliferation and survival and mediates the effects of a variety of anti-cancer agents through IGF-dependent and IGF-independent mechanisms. Therefore, we hypothesized that IGFBP3 mediates GIST cell response to imatinib. To test this hypothesis, we manipulated IGFBP3 protein levels in two KIT mutant, imatinib-sensitive GIST cell lines and assessed the resultant changes in cell viability, survival, and imatinib sensitivity. In GIST882 cells, endogenous IGFBP3 was required for cell viability. However, inhibiting imatinib-induced IGFBP3 up-regulation by RNA interference or neutralization resulted in reduced drug sensitivity, suggesting that IGFBP3 sensitizes GIST882 cells to imatinib. GIST-T1 cells, on the other hand, had no detectable levels of endogenous IGFBP3, nor did imatinib induce IGFBP3 up-regulation, in contrast to our previous findings. IGFBP3 overexpression in GIST-T1 cells reduced viability but did not induce cell death; rather, the cells became polyploid through a mechanism that may involve attenuated Cdc20 expression and securin degradation. Moreover, IGFBP3 overexpression resulted in a loss of KIT activation and decreased levels of mature KIT. Consistent with this, GIST-T1 cells overexpressing IGFBP3 were less sensitive to imatinib. Furthermore, as neither GIST882 cells nor GIST-T1 cells expressed detectable levels of IGF-1R, IGFBP3 is likely not exerting its effects by modulating IGF signaling through IGF-1R or IR/IGF-1R hybrid receptors in these cell lines. Collectively, these findings demonstrate that IGFBP3 has cell-dependent effects and would, therefore, not be an ideal marker for identifying imatinib response in GISTs. Nevertheless, our results provide preliminary evidence that IGFBP3 may have some therapeutic benefits in GISTs. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lindane, or γ-hexachlorocyclohexane, is a chlorinated hydrocarbon pesticide that was banned from U.S. production in 1976, but until recently continued to be imported and applied for occupational and domestic purposes. Lindane is known to cause central nervous system (CNS), immune, cardiovascular, reproductive, liver, and kidney toxicity. The mechanism for which lindane interacts with the CNS has been elucidated, and involves antagonism of the γ-aminobutyric acid/benzodiazepine (GABAA/BZD) receptor. Antagonism of this receptor results in the inhibition of Cl- channel flux, with subsequent convulsions, seizures, and paralysis. This response makes lindane a desirable defense against arthropod pests in agriculture and the home. However, formulation and application of this compound can contribute to human toxicity. In conjunction with this exposure scenario, workers may be subject to both heat and physical stress that may increase their susceptibility to pesticide toxicity by altering their cellular stress response. The kidneys are responsible for maintaining osmotic homeostasis, and are exposed to agents that undergo urinary excretion. The mechanistic action of lindane on the kidneys is not well understood. Lindane, in other organ systems, has been shown to cause cellular damage by generation of free radicals and oxidative stress. Previous research in our laboratory has shown that lindane causes apoptosis in distal tubule cells, and delays renal stress response under hypertonic stress. Characterizing the mechanism of action of lindane under conditions of physiologic stress is necessary to understand the potential hazard cyclodiene pesticides and other organochlorine compounds pose to exposed individuals under baseline conditions, as well as under conditions of physiologic stress. We demonstrated that exposure to lindane results in oxidative damage and dysregulation of glutathione response in renal distal tubule (MDCK) cells. We showed that under conditions of hypertonic stress, lindane-induced oxidative stress resulted in early onset apoptosis and corresponding down-regulated expression of the anti-apoptotic protein, Bcl-xL. Thus, the interaction of lindane with renal peripheral benzodiazepine receptors (PBR) is associated with attenuation of cellular protective proteins, making the cell more susceptible to injury or death. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CYP4F enzymes metabolize endogenous molecules including arachidonic acid, leukotrienes and prostaglandins. The involvement of these eisosanoids in inflammation has led to the hypothesis that CYP4Fs may modulate inflammatory conditions after traumatic brain injury (TBI). In rat, TBI elicited changes in mRNA expression of CYP4Fs as a function of time in the cerebrum region. These changes in CYP4F mRNA levels inversely correlated with the cerebral leukotriene B4 (LTB4) level following injury at the same time points. TBI also resulted in changes in CYP4F protein expression and localization around the injury site, where CYP4F1 and CYP4F6 immunoreactivity increased in surrounding astrocytes and CYP4F4 immunoreactivity shifted from endothelia of cerebral vessels to astrocytes. The study with rat primary astrocytes indicated that pro-inflammatory cytokines TNFα and IL-1β could affect the transcription of CYP4Fs to a certain degree, whereas the changing pattern in the primary astrocytes appeared to be different from that in the in vivo TBI model.^ In addition, the regulation of CYP4F genes has been an unsolved issue although factors including cytokines and fatty acids appear to affect CYP4Fs expression in multiple models. In this project, HaCaT cells were used as an in vitro cellular model to define signaling pathways involved in the regulation of human CYP4F genes. Retinoic acids inhibited CYP4F11 expression, whereas cytokines TNFα and IL-1β induced transcription of CYP4F11 in HaCaT cells. The induction of CYP4F11 by both cytokines could be blocked by a JNK specific inhibitor, indicating the involvement of the JNK pathway in the up-regulation of CYP4F11. Retinoic acids are known to function in gene regulation through nuclear receptors RARs and RXRs. The RXR agonist LG268 greatly induced transcription of CYP4F11, whereas RAR agonist TTNPB obviously inhibited CYP4F11 transcription, indicating that the down-regulation of CYP4F11 by retinoic acid was mediated by RARs, and that inhibition of CYP4F11 by retinoic acid may also be related to the competition for RXR receptors. Thus, the CYP4F11 gene is regulated by signaling pathways including the RXR pathway and the JNK pathway. In contrast, the regulation mechanism of other CYP4Fs by retinoic acids appears to be different from that of CYP4F11.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in therapy for colorectal cancer have been hampered by development of resistance to chemotherapy. The Src family of protein tyrosine kinases has been associated with colorectal cancer development and progression. Activation of the prototypic member of the family, Src, occurs in advanced colorectal cancer and is associated with a worse outcome. This work tests the hypotheses that Src activation contributes to chemoresistance in some colon tumors and that this resistance can be overcome by use of Src inhibitors. The aims of the proposal were to (1) determine if constitutive Src activation is sufficient to induce oxaliplatin resistance; (2) evaluate the role of reactive oxygen species (ROS) in the activation of Src after oxaliplatin treatment; (3) determine the frequency of Src activation in liver metastases after oxaliplatin treatment; and (4) evaluate the safety, preliminary efficacy, and pharmacodynamics of the combination of dasatinib with oxaliplatin-based therapy in patients with metastatic colorectal cancer. ^ Using a panel of colon cancer cell lines and murine models, I demonstrate that administration of oxaliplatin, a commonly utilized chemotherapy for colorectal cancer, results in an increased activation of Src. The activation occurs acutely in some, but not all, colorectal carcinoma cell lines. Cell lines selected for oxaliplatin resistance are further increased in Src activity. Treatment of cell lines with dasatinib, a non-selective pharmacologic inhibitor of the Src family kinases synergistically killed some, but not all cell lines. Cell lines with the highest acute activation of Src after oxaliplatin administration were the most sensitive to the combination therapy. Previous work demonstrated that siRNA to Src increased sensitivity to oxaliplatin, suggesting that the effects of dasatinib are primarily due to its ability to inhibit Src in these cell lines. ^ To examine the mechanism underlying these results, I examined the effects of reactive oxygen species (ROS), as previous studies have demonstrated that platinum chemotherapeutics result in intracellular oxidative stress. I demonstrated that oxaliplatin-induced reactive oxygen species were higher in the cell lines with Src activation, relative to those in which Src was not activated. This oxaliplatin-induced Src activation was blocked by the administration of anti-oxidants, thereby demonstrating that synergistic killing between dasatinib and oxaliplatin was associated with the ability of the latter to generate ROS. ^ In a murine model of colorectal cancer metastasis to the liver, the combination of dasatinib and oxaliplatin was more effective in reducing tumor volume than either agent alone. However, when oxaliplatin resistant cell lines were treated with a combination of oxaliplatin and AZD0530, an inhibitor in the clinic with increased specificity for Src, no additional benefit was seen, although Src was activated by oxaliplatin and Src substrates were inhibited. The indolent growth of oxaliplatin-resistant cells, unlike the growth of oxaliplatin resistant tumors in patients, precludes definitive interpretation of these results. ^ To further explore Src activation in patients with oxaliplatin exposure and resistance, an immunohistochemistry analysis of tumor tissue from resected liver metastases of colorectal cancer was performed. Utilizing a tissue microarray, staining for phosphorylated Src and FAK demonstrated strong staining of tumor relative to stromal and normal liver. In patients recently exposed to oxaliplatin, there was increased FAK activation, supporting the clinical relevance of the prior preclinical studies. ^ To pursue the potential clinical benefit of the combination of Src inhibition with oxaliplatin, a phase IB clinical trial was completed. Thirty patients with refractory metastatic colorectal cancer were treated with a combination of 5-FU, oxaliplatin, an epidermal-growth factor receptor monoclonal antibody, and dasatinib. The recommended phase II dose of dasatinib was established, and toxicities were quantified. Pharmacodynamic studies demonstrated increased phosphorylation of the Src substrate paxillin after dasatinib therapy. Tumor biopsies were obtained and Src expression levels were quantitated. Clinical benefit was seen with the combination, including a response rate of 20% and disease control rate of 56%, prompting a larger clinical study. ^ In summary, although Src is constitutively activated in metastatic colorectal cancer, administration of oxaliplatin chemotherapy can further increase its activity, through a reactive oxygen species dependent manner. Inhibition of Src in combination with oxaliplatin provides additional benefit in vitro, in preclinical animal models, and in the clinic. Further study of Src inhibition in the clinic and identification of predictive biomarkers of response will be required to further advance this promising therapeutic target. ^