32 resultados para Tumor Necrosis Factor
Resumo:
Tumor necrosis factor (TNF)-Receptor Associated Factors (TRAFs) are a family of signal transducer proteins. TRAF6 is a unique member of this family in that it is involved in not only the TNF superfamily, but the toll-like receptor (TLR)/IL-1R (TIR) superfamily. The formation of the complex consisting of Receptor Activator of Nuclear Factor κ B (RANK), with its ligand (RANKL) results in the recruitment of TRAF6, which activates NF-κB, JNK and MAP kinase pathways. TRAF6 is critical in signaling with leading to release of various growth factors in bone, and promotes osteoclastogenesis. TRAF6 has also been implicated as an oncogene in lung cancer and as a target in multiple myeloma. In the hopes of developing small molecule inhibitors of the TRAF6-RANK interaction, multiple steps were carried out. Computational prediction of hot spot residues on the protein-protein interaction of TRAF6 and RANK were examined. Three methods were used: Robetta, KFC2, and HotPoint, each of which uses a different methodology to determine if a residue is a hot spot. These hot spot predictions were considered the basis for resolving the binding site for in silico high-throughput screening using GOLD and the MyriaScreen database of drug/lead-like compounds. Computationally intensive molecular dynamics simulations highlighted the binding mechanism and TRAF6 structural changes upon hit binding. Compounds identified as hits were verified using a GST-pull down assay, comparing inhibition to a RANK decoy peptide. Since many drugs fail due to lack of efficacy and toxicity, predictive models for the evaluation of the LD50 and bioavailability of our TRAF6 hits, and these models can be used towards other drugs and small molecule therapeutics as well. Datasets of compounds and their corresponding bioavailability and LD50 values were curated based, and QSAR models were built using molecular descriptors of these compounds using the k-nearest neighbor (k-NN) method, and quality of these models were cross-validated.
Resumo:
An abundance of monocytes and macrophages (MO/MA) in the microenvironment of epithelial ovarian cancer (EOC) suggests possible dual roles for these cells. Certain MO/MA subpopulations may inhibit tumor growth by antibody-dependent cell-mediated cytotoxicity (ADCC), phagocytosis, or stimulation of adaptive immunity. In contrast, other MO/MA subpopulations may support tumor growth by immunosuppressive or pro-angiogenic cytokine production. A better understanding of the phenotype and activity of MO/MA in EOC should lead to greater insight into their role in the immunopathobiology of EOC and hence suggest targets for treatment. We have found differences in the proportions of MO/MA subpopulations in the peripheral blood and ascites of EOC patients compared to normal donors, and differences in MO/MA surface phenotype in the associated tumor environment compared to the systemic circulation. We also demonstrate that, following their activation in vitro, monocyte-derived macrophages (MDM) from the peripheral blood and ascites of EOC patients exhibit antitumor effector activities that are different from the behavior of normal donor cells. The phenotypic characteristics and antitumor activity of CD14+ MO/MA and an isolated subpopulation of CD14brightCD16 −HLA-DR+ MO/MA were compared in samples of normal donor peripheral blood and the peripheral blood and ascites from EOC patients. MDM were cultured with macrophage colony-stimulating factor (M-CSF) and activated with lipopolysaccharide (LPS) or a combination of LPS plus recombinant interferon-gamma. We determined that MO/MA from EOC patients had altered morphology and significantly less ADCC and phagocytic activity than did MO/MA from normal donors. ADCC and phagocytosis are mediated by receptors for the Fe portion of IgG (FcγRs), the expression of which were also found to be deficient on EOC MDM from peripheral blood and ascites. Anti-tumor functions not mediated by the FcγRs, such as macrophage mediated cytotoxicity and cytostasis, were not impaired in EOC MDM compared to normal donor MDM. Our findings also showed that MDM from both EOC patients and normal donors produce M-CSF-stimulated cytokines, including interleukin-8, tumor necrosis factor alpha, and interleukin-6, which have the potential to support ovarian tumor growth and metastasis. These findings may be relevant to the pathogenesis of EOC and to the development of future bioimmunotherapeutic strategies. ^