59 resultados para TOR pathway
Resumo:
Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^
Resumo:
Atherosclerosis is a complex disease resulting from interactions of genetic and environmental risk factors leading to heart failure and stroke. Using an atherosclerotic mouse model (ldlr-/-, apobec1-/- designated as LDb), we performed microarray analysis to identify candidate genes and pathways, which are most perturbed in changes in the following risk factors: genetics (control C57BL/6 vs. LDb mice), shearstress (lesion-prone vs. lesion-resistant regions in LDb mice), diet (chow vs. high fat fed LDb mice) and age (2-month-old vs. 8-month old LDb mice). ^ Atherosclerotic lesion quantification and lipid profile studies were performed to assess the disease phenotype. A microarray study was performed on lesion-prone and lesion-resistant regions of each aorta. Briefly, 32 male C57BL/6 and LDb mice (n =16/each) were fed on either chow or high fat diet, sacrificed at 2- and 8-months old, and RNA isolated from the aortic lesion-prone and aortic lesion-resistant segments. Using 64 Affymetrix Murine 430 2.0 chips, we profiled differentially expressed genes with the cut off value of FDR ≤ 0.15 for t-test, and q <0.0001 for the ANOVA. The data were normalized using two normalization methods---invariant probe sets (Loess) and Quantile normalization, the statistical analysis was performed using t-tests and ANOVA, and pathway characterization was done using Pathway Express (Wayne State). The result identified the calcium signaling pathway as the most significant overrepresented pathway, followed by focal adhesion. In the calcium signaling pathway, 56 genes were found to be significantly differentially expressed out of 180 genes listed in the KEGG calcium signaling pathway. Nineteen of these genes were consistently identified by both statistical tests, 11 of which were unique to the test, and 26 were unique to the ANOVA test, using the cutoffs noted above. ^ In conclusion, this finding suggested that hypercholesterolemia drives the disease progression by altering the expression of calcium channels and regulators which subsequently results in cell differentiation, growth, adhesion, cytoskeletal change and death. Clinically, this pathway may serve as an important target for future therapeutic intervention, and thus the calcium signaling pathway may serve as an important target for future diagnostic and therapeutic intervention. ^
Resumo:
Systemic sclerosis (SSc) or Scleroderma is a complex disease and its etiopathogenesis remains unelucidated. Fibrosis in multiple organs is a key feature of SSc and studies have shown that transforming growth factor-β (TGF-β) pathway has a crucial role in fibrotic responses. For a complex disease such as SSc, expression quantitative trait loci (eQTL) analysis is a powerful tool for identifying genetic variations that affect expression of genes involved in this disease. In this study, a multilevel model is described to perform a multivariate eQTL for identifying genetic variation (SNPs) specifically associated with the expression of three members of TGF-β pathway, CTGF, SPARC and COL3A1. The uniqueness of this model is that all three genes were included in one model, rather than one gene being examined at a time. A protein might contribute to multiple pathways and this approach allows the identification of important genetic variations linked to multiple genes belonging to the same pathway. In this study, 29 SNPs were identified and 16 of them located in known genes. Exploring the roles of these genes in TGF-β regulation will help elucidate the etiology of SSc, which will in turn help to better manage this complex disease. ^
Resumo:
Diffuse gliomas are highly lethal central nervous system malignancies which, unfortunately, are the most common primary brain tumor and also the least responsive to the very few therapeutic modalities currently available to treat them. IGFBP2 is a newly recognized oncogene that is operative in multiple cancer types, including glioma, and shows promise for a targeted therapeutic approach. Elevated IGFBP2 expression is present in high-grade glioma and correlates with poor survival. We have previously demonstrated that IGFBP2 induces glioma development and progression in a spontaneous glioma mouse model, which highlighted its significance and potential for future therapy. However, we did not yet know the key physiological pathways associated with this newly characterized oncogene. We first evaluated human glioma genomics data harnessed from the publicly available Rembrandt source to identify major pathways associated with IGFBP2 expression. Integrin and ILK, among other cell migration and invasion-related pathways, were the most prominently associated. We confirmed that these pathways are regulated by IGFBP2 in glioma cells lines, and demonstrated that 1) IGFBP2 activates integrin α5β1, leading to the activation of key pathways important in glioma; 2) IGFBP2 mediates cell migration pathways through ILK; and 3) IGFBP2 activates NF-kB via an integrin α5 interaction. We then sought to determine whether this was a physiologically active signaling pathway in vivo by assessing its ability to induce glioma progression in the RCAS/tv-a spontaneous glioma mouse model. We found that ILK is a key downstream mediator of IGFBP2 that is required for the induction of glioma progression. Most significantly, a genetic therapeutic approach revealed that perturbation of any point in the pathway thwarted tumor progression, providing strong evidence that targeting the key players could potentially produce a significant benefit for human glioma patients. The elucidation of this signaling pathway is a critical step, since efforts to create a small molecule drug targeting IGFBP2 have so far not been successful, but a number of inhibitors of the other pathway constituents, including ILK, integrin and NF-kB, have been developed.
Resumo:
Background. The mTOR pathway is commonly altered in human tumors and promotes cell survival and proliferation. Preliminary evidence suggests this pathway's involvement in chemoresistance to platinum and taxanes, first line therapy for epithelial ovarian cancer. A pathway-based approach was used to identify individual germline single nucleotide polymorphisms (SNPs) and cumulative effects of multiple genetic variants in mTOR pathway genes and their association with clinical outcome in women with ovarian cancer. ^ Methods. The case-series was restricted to 319 non-Hispanic white women with high grade ovarian cancer treated with surgery and platinum-based chemotherapy. 135 SNPs in 20 representative genes in the mTOR pathway were genotyped. Hazard ratios (HRs) for death and Odds ratios (ORs) for failure to respond to primary therapy were estimated for each SNP using the multivariate Cox proportional hazards model and multivariate logistic regression model, respectively, while adjusting for age, stage, histology and treatment sequence. A survival tree analysis of SNPs with a statistically significant association (p<0.05) was performed to identify higher order gene-gene interactions and their association with overall survival. ^ Results. There was no statistically significant difference in survival by tumor histology or treatment regimen. The median survival for the cohort was 48.3 months. Seven SNPs were significantly associated with decreased survival. Compared to those with no unfavorable genotypes, the HR for death increased significantly with the increasing number of unfavorable genotypes and women in the highest risk category had HR of 4.06 (95% CI 2.29–7.21). The survival tree analysis also identified patients with different survival patterns based on their genetic profiles. 13 SNPs on five different genes were found to be significantly associated with a treatment response, defined as no evidence of disease after completion of primary therapy. Rare homozygous genotype of SNP rs6973428 showed a 5.5-fold increased risk compared to the wild type carrying genotypes. In the cumulative effect analysis, the highest risk group (individuals with ≥8 unfavorable genotypes) was significantly less likely to respond to chemotherapy (OR=8.40, 95% CI 3.10–22.75) compared to the low risk group (≤4 unfavorable genotypes). ^ Conclusions. A pathway-based approach can demonstrate cumulative effects of multiple genetic variants on clinical response to chemotherapy and survival. Therapy targeting the mTOR pathway may modify outcome in select patients.^
Resumo:
Ovarian cancer is the leading cause of cancer-related death for females due to lack of specific early detection method. It is of great interest to find molecular-based biomarkers which are sensitive and specific to ovarian cancer for early diagnosis, prognosis and therapeutics. miRNAs have been proposed to be potential biomarkers that could be used in cancer prevention and therapeutics. The current study analyzed the miRNA and mRNA expression data extracted from the Cancer Genome Atlas (TCGA) database. Using simple linear regression and multiple regression models, we found 71 miRNA-mRNA pairs which were negatively associated between 56 miRNAs and 24 genes of PI3K/AKT pathway. Among these miRNA and mRNA target pairs, 9 of them were in agreement with the predictions from the most commonly used target prediction programs including miRGen, miRDB, miRTarbase and miR2Disease. These shared miRNA-mRNA pairs were considered to be the most potential genes that were involved in ovarian cancer. Furthermore, 4 of the 9 target genes encode cell cycle or apoptosis related proteins including Cyclin D1, p21, FOXO1 and Bcl2, suggesting that their regulator miRNAs including miR-16, miR-96 and miR-21 most likely played important roles in promoting tumor growth through dysregulated cell cycle or apoptosis. miR-96 was also found to directly target IRS-1. In addition, the results showed that miR-17 and miR-9 may be involved in ovarian cancer through targeting JAK1. This study might provide evidence for using miRNA or miRNA profile as biomarker.^
Resumo:
Candida albicans causes opportunistic fungal infections in humans and is a significant cause of mortality and morbidity in immune-compromised individuals. Dectin-2, a C-type lectin receptor, is required for recognition of C. albicans by innate immune cells and is required for initiation of the anti-fungal immune response. We set out to identify components of the intracellular signaling cascade downstream of Dectin-2 activation in macrophages and to understand their importance in mediating the immune response to C. albicans in vivo. Using macrophages derived from Phospholipase-C-gamma 1 and 2 (PLCγ1and PLCγ2) knockout mice, we demonstrate that PLCγ2, but not PLCγ1, is required for activation of NF-κB and MAPK signaling pathways after C. albicans stimulation, resulting in impaired production of pro-inflammatory cytokines and reactive oxygen species. PLCγ2-deficient mice are highly susceptible to infections with C. albicans, indicating the importance of this pathway to the anti-fungal immune response. TAK1 and TRAF6 are critical nodes in NF-κB and MAPK activation downstream of immune surveillance and may be critical to the signaling cascade initiated by C-type lectin receptors in response to C. albicans. Macrophages derived from both TAK1 and TRAF6-deficient mice were unable to activate NF-κB and MAPK and consequently failed to produce inflammatory cytokines characteristic of the response to C. albicans. In this work we have identified PLCγ2, TAK1 and TRAF6 as components of a signaling cascade downstream of C. albicans recognition by C-type lectin receptors and as critical mediators of the anti-fungal immune response. A mechanistic understanding of the host immune response to C. albicans is important for the development of anti-fungal therapeutics and in understanding risk-factors determining susceptibility to C. albicans infection.
Resumo:
Adherens junctions (AJs) and basolateral modules are important for the establishment and maintenance of apico-basal polarity. Loss of AJs and basolateral module members lead to tumor formation, as well as poor prognosis for metastasis. Recently, in mammalian studies it has been shown that loss of either AJ or basolateral module members deregulate Yorkie activity, the downstream transcriptional effector of the Hippo pathway. Importantly, it is unclear if AJ and basolateral components act through the same or parallel mechanisms to regulate Yorkie activity. Here, we dissect how loss of AJ and basolateral components affects Hippo signaling in Drosophila. Surprisingly, while scrib knock-down tissue displays increased reporter activity autonomously, α-cat knock-down tissue shows a cell autonomous decrease and a cell non-autonomous increase of Hippo reporter activity. We provided several lines of evidence to show the differential regulation in polarity protein localizations and oncogenic cooperative overgrowth by AJs and basolateral complexes. Finally, we show that Hippo pathway activity is induced in α-cat and scrib double knocked-down tissue. Taken together, our results provide evidence to show that basolateral modules and AJs act in parallel to modulate Hippo pathway activity. Non-muscle myosin II is an actomyosin component that interacts with the actin. Non-muscle myosin II also interacts with lgl, though the function of this interaction is not clear. Our lab demonstrated that modulating F-actin regulates Hippo pathway activity, and lgl also has been described as a Hippo pathway regulator. Therefore we suspect that myosin II is also involved in Hippo pathway regulation. We first characterized non-muscle Myosin II as a novel tumor suppressor gene by affecting Hippo pathway activity. Upstream regulators of Myosin II, members in the Rho signaling pathway, also displayed similar phenotypes as the Myosin II knock-down tissues. Apoptosis is also induced in myosin II knock-down tissues, however, blocking cell death does not affect myosin II knock-down induced Hippo activation. Our data suggested hyperactivating myosin II induced F-actin accumulation so therefore induces Hippo target activation. Unexpectedly, we also observed that reducing F-actin activity induced Hippo target activation in vivo. These controversial data indicated that actomyosin may regulate the Hippo pathway through multiple mechanisms.
Resumo:
Genome-wide association studies (GWAS) have successfully identified several genetic loci associated with inherited predisposition to primary biliary cirrhosis (PBC), the most common autoimmune disease of the liver. Pathway-based tests constitute a novel paradigm for GWAS analysis. By evaluating genetic variation across a biological pathway (gene set), these tests have the potential to determine the collective impact of variants with subtle effects that are individually too weak to be detected in traditional single variant GWAS analysis. To identify biological pathways associated with the risk of development of PBC, GWAS of PBC from Italy (449 cases and 940 controls) and Canada (530 cases and 398 controls) were independently analyzed. The linear combination test (LCT), a recently developed pathway-level statistical method was used for this analysis. For additional validation, pathways that were replicated at the P <0.05 level of significance in both GWAS on LCT analysis were also tested for association with PBC in each dataset using two complementary GWAS pathway approaches. The complementary approaches included a modification of the gene set enrichment analysis algorithm (i-GSEA4GWAS) and Fisher's exact test for pathway enrichment ratios. Twenty-five pathways were associated with PBC risk on LCT analysis in the Italian dataset at P<0.05, of which eight had an FDR<0.25. The top pathway in the Italian dataset was the TNF/stress related signaling pathway (p=7.38×10 -4, FDR=0.18). Twenty-six pathways were associated with PBC at the P<0.05 level using the LCT in the Canadian dataset with the regulation and function of ChREBP in liver pathway (p=5.68×10-4, FDR=0.285) emerging as the most significant pathway. Two pathways, phosphatidylinositol signaling system (Italian: p=0.016, FDR=0.436; Canadian: p=0.034, FDR=0.693) and hedgehog signaling (Italian: p=0.044, FDR=0.636; Canadian: p=0.041, FDR=0.693), were replicated at LCT P<0.05 in both datasets. Statistically significant association of both pathways with PBC genetic susceptibility was confirmed in the Italian dataset on i-GSEA4GWAS. Results for the phosphatidylinositol signaling system were also significant in both datasets on applying Fisher's exact test for pathway enrichment ratios. This study identified a combination of known and novel pathway-level associations with PBC risk. If functionally validated, the findings may yield fresh insights into the etiology of this complex autoimmune disease with possible preventive and therapeutic application.^
Resumo:
Background. It is estimated that hospitals spend between 28 and 33 billion dollars per year as a result of hospital-acquired infections. (Scott, 2009) The costs continue to rise despite the guidance and controls provided by hospital infection control staff to reduce patient exposures to fungal spores and other infectious agents. With all processes and controls in place, the vented elevator shaft represents an unprotected opening from the top of the building to the lower floors. The hypothesis for this prospective study is that there is a positive correlation between the number of Penicillium/Aspergillus-like spores, Cladosporium, ascospores, basidiospores in spores/m3 as individual spore categories found in the hoistway vent of an elevator shaft and the levels of the same spores, sampled near-simultaneously in the outdoor intake of the elevator shaft. Specific aims of this study include determining if external Penicillium/Aspergillus-like spores are entering the healthcare facility via the elevator shaft and hoistway vents. Additional aims include determining levels of Penicillium/Aspergillus-like spores outdoors, in the elevator shafts, and indoors in areas possibly affected by elevator shaft air; and, finally, to evaluate whether any effect is observed due to the installation of a hoistway vent damper, installed serendipitously during this study. ^ Methods. Between April 2010 and September 2010, a total of 3,521 air samples were collected, including 363 spore trap samples analyzed microscopically for seven spore types, and polymerase chain reaction analyses on 254 air samples. 2178 particle count measurements, 363 temperature readings and 363 relative humidity readings were also obtained from 7 different locations potentially related to the path of air travel inside and near a centrally-located and representative elevator shaft. ^ Results. Mean Penicillium/Aspergillus-like spore values were higher outside the building (530 spores/m3 of air) than inside the hoistway (22.8 spores/m3) during the six month study. Mean values inside the hospital were lower than outside throughout the study, ranging from 15 to 73 spores/m3 of air. Mean Penicillium/Aspergillus-like spore counts inside the hoistway decreased from 40.1 spores/m3 of air to 9 spores/m3 of air following the installation of a back draft damper between the outside air and the elevator shaft. Comparison of samples collected outside the building and inside the hoistway vent prior to installing the damper indicated a strong positive correlation (Spearman's Rho=0.8008, p=0.0001). The similar comparison following the damper installation indicated a moderate non-significant inverse correlation (Spearman's rho = −0.2795, p=0.1347). ^ Conclusion. Elevator shafts are one pathway for mold spores to enter a healthcare facility. A significant correlation was detected between spores and particle counts inside the hoistway and outside prior to changes in the ventilation system. The insertion of the back draft damper appeared to lower the spore counts inside the hoistway and inside the building. The mold spore counts in air outside the study building were higher in the period following the damper installation while the levels inside the hoistway and hospital decreased. Cladosporium and Penicillium/Aspergillus -like spores provided a method for evaluating indoor air quality as a natural tracer from outside the building to inside the building. Ascospores and basidiospores were not a valuable tracer due to low levels of detection during this study. ^ Installation of a back draft damper provides additional protection for the indoor environment of a hospital or healthcare facility, including in particular patients who may be immunocompromised. Current design standards and references do not require the installation of a back draft damper, but evaluation of adding language to relevant building codes should be considered. The data indicate a reduction in levels of Penicillium/Aspergillus -like spores, particle counts and a reduction in relative humidity inside of the elevator shaft after damper installation.^
Resumo:
Cancer therapy and tumor treatment remain unsolved puzzles. Genetic screening for tumor suppressor genes in Drosophila revealed the Hippo-signaling pathway as a kinase cascade consisting of five core components. Disrupting the pathway by deleting the main component genes breaks the balance of cell proliferation and apoptosis and results in epithelial tissue tumorigenesis. The pathway is therefore believed to be a tumor suppressor pathway. However, a corresponding role in mammals is yet to be determined. Our lab began to investigate the tumor suppression function of the potent mammalian Hippo pathway by putting floxed alleles into the mouse genome flanking the functional-domain-expressing exons in each component (Mst1, Mst2, Sav1, Lats1 and Lats2). These mice were then crossed with different cre-mouse lines to generate conditional knockout mice. Results indicate a ubiquitous tumor suppression function of these components, predominantly in the liver. A further liver specific analysis of the deletion mutation of these components, as well as the Yap/Taz double deletion mutation, reveals essential roles of the Hippo pathway in regulating hepatic quiescence and embryonic liver development. One of the key cellular mechanisms for the Hippo pathway’s involvement in these liver biological events is likely its cell cycle regulation function. Our work will help to develop potential therapeutic approaches for liver cancer.
Resumo:
The genetic factors that influence bladder cancer clinical outcomes are largely unknown. In this clinical outcomes study, I assessed genetic variations in the Wnt/β-catenin stem-cell pathway genes for association with recurrence and progression. A total of 230 SNPS in 40 genes from the Wnt/β-catenin pathway were genotyped in 419 histologically confirmed non-muscle invasive bladder cancer cases. Several significant associations were observed in the clinical outcomes analysis. Under the dominant model WNT8B: rs4919464 (HR: 1.55, 95% CI: 1.17-2.06, P=2.2x10-3) and WNT8B: rs3793771 (HR: 1.54, 95% CI: 1.09-1.62, P=4.6x10-3 ) were statistically significantly associated with an increase risk of recurrence while two other variants, APC2: rs11668593 (HR: 2.50, 95% CI: 1.43-4.35, P=1.2x10-3) and LRP5 : rs312778 (HR: 1.81, 95% CI: 1.23-2.65, P=2.7x10-3), were significantly associated with recurrence risk under the recessive model of inheritance. Four SNPs in the recessive model were associated with an increased risk of progression (AXIN2: rs1544427, LRP5: rs312778, AXIN1: rs370681, AXIN1: rs2301522). LRP5: rs312778 had the most significant increased risk of progression with a 2.68 (95% CI: 1.52-4.72, P=6.4x10-4)-fold increased risk. Stratification analysis based on treatment regimen (transurethral resection (TUR) and Bacillus Calmette-Guérin (BCG)) was also performed. Individuals with at least one variant in AXIN2: rs2007085 were found to have a 2.09 (95% CI: 1.24-3.52, P=5.4x10-3) -fold increased risk of recurrence in those that received TUR only, and no statistically significant effect was seen in those that received BCG. Individuals who received TUR with at least one variant in LEF1: rs10516550 were found to have a 2.26 (95% CI: 1.22-4.18, P=9.7x10-3)-fold increase risk of recurrence and no statistically significant effect was found in individuals who received BCG. Also, the recessive model of LRP6: rs2302684 in TUR only treatment was shown to have a 1.95 (95%CI: 1.18-3.21, P=8.8x10 -3)-fold increased risk of recurrence, and a suggested protective effect associated with a (HR: 0.83, 95% CI: 0.51-1.37, P=0.468) decreased risk of recurrence. Together, these findings implicate the Wnt/β-catenin stem-cell pathway as playing a role in bladder cancer clinical outcomes and have important implications for personalization of future treatment regimens. ^
Resumo:
The interplay between obesity, physical activity, weight gain and genetic variants in mTOR pathway have not been studied in renal cell carcinoma (RCC). We examined the associations between obesity, weight gain, physical activity and RCC risk. We also analyzed whether genetic variants in the mTOR pathway could modify the association. Incident renal cell carcinoma cases and healthy controls were recruited from the University of Texas MD Anderson Cancer Center in Houston, Texas. Cases and controls were frequency-matched by age (±5 years), ethnicity, sex, and county of residence. Epidemiologic data were collected via in-person interview. A total of 577 cases and 593 healthy controls (all white) were included. One hundred ninety-two (192) SNPs from 22 genes were available and their genotyping data were extracted from previous genome-wide association studies. Logistic regression and regression spline were performed to obtain odds ratios. Obesity at age 20, 40, and 3 years prior to diagnosis/recruitment, and moderate and large weight gain from age 20 to 40 were each significantly associated with increased RCC risk. Low physical activity was associated with a 4.08-fold (95% CI: 2.92-5.70) increased risk. Five single nucleotide polymorphisms (SNPs) were significantly associated with RCC risk and their cumulative effect increased the risk by up to 72% (95% CI: 1.20-2.46). Strata specific effects for weight change and genotyping cumulative groups were observed. However, no interaction was suggested by our study. In conclusion, energy balance related risk factors and genetic variants in the mTOR pathway may jointly influence susceptibility to RCC. ^
Resumo:
Schizophrenia (SZ) is a complex disorder with high heritability and variable phenotypes that has limited success in finding causal genes associated with the disease development. Pathway-based analysis is an effective approach in investigating the molecular mechanism of susceptible genes associated with complex diseases. The etiology of complex diseases could be a network of genetic factors and within the genes, interaction may occur. In this work we argue that some genes might be of small effect that by itself are neither sufficient nor necessary to cause the disease however, their effect may induce slight changes to the gene expression or affect the protein function, therefore, analyzing the gene-gene interaction mechanism within the disease pathway would play crucial role in dissecting the genetic architecture of complex diseases, making the pathway-based analysis a complementary approach to GWAS technique. ^ In this study, we implemented three novel linkage disequilibrium based statistics, the linear combination, the quadratic, and the decorrelation test statistics, to investigate the interaction between linked and unlinked genes in two independent case-control GWAS datasets for SZ including participants of European (EA) and African (AA) ancestries. The EA population included 1,173 cases and 1,378 controls with 729,454 genotyped SNPs, while the AA population included 219 cases and 288 controls with 845,814 genotyped SNPs. We identified 17,186 interacting gene-sets at significant level in EA dataset, and 12,691 gene-sets in AA dataset using the gene-gene interaction method. We also identified 18,846 genes in EA dataset and 19,431 genes in AA dataset that were in the disease pathways. However, few genes were reported of significant association to SZ. ^ Our research determined the pathways characteristics for schizophrenia through the gene-gene interaction and gene-pathway based approaches. Our findings suggest insightful inferences of our methods in studying the molecular mechanisms of common complex diseases.^
Resumo:
Gastrointestinal Stromal Tumors (GIST) are sarcomas driven by gain-of-function mutations of KIT or PDGFRA. Although, the introduction of tyrosine kinase inhibitors has dramatically changed the history of this disease, evidences emerge that inhibition of KIT or PDGFRA are not sufficient to cure patients. The developmental pathway Notch has a critical role in the cell fate, regulating cell proliferation and differentiation. Dysregulation of Notch pathway has been implicated in a wide variety of cancers functioning as a tumor promoter or a tumor suppressor in a cell context dependent manner. Given that Notch activation deregulates the morphogenesis of mesenchymal cells in the GI track, that Notch acts as a tumor suppressor in neuroendocrine tumors, and finally that the cell of origin of GIST are the Interstitial Cell of Cajal that arise from a mesenchymal origin with some neuroendocrine features, we hypothesized that Notch pathway signaling may play a role in growth, survival and differentiation of GIST cells. To test this hypothesis, we genetically and pharmacologically manipulated the Notch pathway in human GIST cells. In this study, we demonstrated that constitutively active intracellular domain of Notch1 (ICN-1) expression potently induced growth arrest and downregulated KIT expression. We have performed a retrospective analysis of 15 primary GIST patients and found that high mRNA level of Hes1, a major target gene of Notch pathway, correlated with a significantly longer relapse-free survival. Therefore, we have established that treatment with the FDA approved histone deacetylase inhibitor SAHA (Vorinostat) caused dose-dependent upregulation of Notch1 expression and a parallel decrease in viability in these cells. Retroviral silencing of downstream targets of Notch with dominant negative Hes-1 as well as pharmacological inhibition of Notch pathway with a γ-secretase inhibitor partially rescued GIST cells from SAHA treatment. Taken together these results identify anti-tumor effect of Notch1 and a negative cross-talk between Notch1 and KIT pathways in GIST. Consequently, we propose that activation of this pathway with HDAC inhibitors may be a potential therapeutic strategy for GIST patients.