39 resultados para TGF-BETA SIGNALING


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1-regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN-alpha) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN-gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN-beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN-beta induction followed by IRF regulation and TRAIL/FasL system activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IkappaB kinase beta (IKKbeta) is involved in tumor development and progression through activation of the nuclear factor (NF)-kappaB pathway. However, the molecular mechanism that regulates IKKbeta degradation remains largely unknown. Here, we show that a Cullin 3 (CUL3)-based ubiquitin ligase, Kelch-like ECH-associated protein 1 (KEAP1), is responsible for IKKbeta ubiquitination. Depletion of KEAP1 led to the accumulation and stabilization of IKKbeta and to upregulation of NF-kappaB-derived tumor angiogenic factors. A systematic analysis of the CUL3, KEAP1, and RBX1 genomic loci revealed a high percentage of genome loss and missense mutations in human cancers that failed to facilitate IKKbeta degradation. Our results suggest that the dysregulation of KEAP1-mediated IKKbeta ubiquitination may contribute to tumorigenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conditioned stimulus pathway protein 24 (Csp24) is a beta-thymosin-like protein that is homologous to other members of the family of beta-thymosin repeat proteins that contain multiple actin binding domains. Actin co-precipitates with Csp24 and co-localizes with it in the cytosol of type-B photoreceptor cell bodies. Several signal transduction pathways have been shown to regulate the phosphorylation of Csp24 and contribute to cellular plasticity. Here, we report the identification of the adapter protein 14-3-3 in lysates of the Hermissenda circumesophageal nervous system and its interaction with Csp24. Immunoprecipitation experiments using an antibody that is broadly reactive with several isoforms of the 14-3-3 family of proteins showed that Csp24 co-precipitates with 14-3-3 protein, and nervous systems stimulated with 5-HT exhibited a significant increase in co-precipitated Csp24 probed with a phosphospecific antibody as compared with controls. These results indicate that post-translational modifications of Csp24 regulate its interaction with 14-3-3 protein, and suggest that this mechanism may contribute to the control of intrinsic enhanced excitability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under normal physiological conditions, cells of the hematopoietic system produce Interleukin-1$\beta$(IL-1$\beta)$ only when a stimulus is present. Leukemic cells, however, can constitutively produce this cytokine without an exogenous source of activation. In addition, IL-1$\beta$ can operate as an autocrine and/or paracrine growth factor for leukemic blasts. In order to study the cellular basis for this aberrant production, we analyzed two leukemic cell lines (B1 and W1) which express high levels of IL-1$\beta$ and use IL-1$\beta$ as an autocrine growth factor. Initial studies demonstrated: (1) lack of rearrangement and/or amplification in the IL-1$\beta$ gene and its promoter; and (2) intact responsiveness to regulators such as cycloheximide and dexamethasone, implying that the molecular defect was upstream. Analysis of the Ras inducible transcription factors by gel shift assay demonstrated constitutive transcription factor binding in the IL-1$\beta$ promoter. Furthermore, RAS mutations were found at codon 12 in the K-RAS and N-RAS genes in the B1 and W1 cells, respectively. To deduce the effects of activated Ras on IL-1$\beta$ expression, two classes of farnesyltransferase inhibitors and an adenoviral vector expressing antisense targeted to K-RAS were utilized. The farnesyltransferase inhibitors perillyl alcohol and B581 were able to reduce IL-1$\beta$ levels by 80% and 50% in the B1 cells, respectively. In W1 cells, IL-1$\beta$ was reduced by 60% with 1mM perillyl alcohol. Antisense RNA targeted to K-RAS confirmed the results demonstrating a 50% reduction in IL-1$\beta$ expression in the B1 cells. In addition, decreased binding at the crucial NF-IL6/CREB binding site correlated with decreased IL-1$\beta$ production and cellular proliferation implying that this site was a downstream effector of Ras signaling. Our data suggest that mutated RAS genes may be responsible for autocrine IL-1$\beta$ production in some leukemias by stimulating signal transduction pathways that activate the IL-1$\beta$ promoter. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to characterize epidermal hyperplasia overlying malignant melanoma, to determine the mitogenic factor responsible for the induction of this hyperplasia and to investigate its biological consequence. Whether increased keratinocyte proliferation overlying melanoma is due to production of growth factors by the tumor cells or to other mechanisms is unknown. Epidermal hyperplasia overlying human melanoma was found overlying thick (>4.0mm), but not thin (<1.0mm) tumors. Immunostaining of the sections for growth factors related to angiogenesis revealed that epidermal hyperplasia was associated with loss of IFN-β production by the keratinocytes directly overlying the tumors. Since previous studies from our laboratory have demonstrated that exogenous administration of IFN-β negatively regulates angiogenesis, we hypothesize that tumors are able to produce growth factors which stimulate the proliferation of cells in the surrounding tissues. This hyperplasia leads to a decrease in the endogenous negative regulator of angiogenesis, IFN-β. ^ The human melanoma cell line, DM-4 and several of its clones were studied to identify the mitogenic factor for keratinocytes. The expression of TGF-α directly correlated with epidermal hyperplasia in the DM-4 clones. A375SM, a human melanoma cell line that produces high levels of TGF-α, was transfected with a plasmid encoding full-length antisense TGF-α. The parental and transfected cells were implanted intradermally into nude mice. The extent of epidermal hyperplasia directly correlated with expression of TGF-α and decreased production of IFN-β, hence, increased angiogenesis. ^ In the next set of experiments, we determined the role of IFN-β on angiogenesis, tumor growth and metastasis of skin tumors. Transgenic mice containing a functional mutation in the receptor for IFN α/β were obtained. A375SM melanoma cells were implanted both s.c. and i.v. into IFN α/βR −/− mice. Tumors in the IFN α/β R −/− mice exhibited increased angiogenesis and metastasis. IFN α/βR −/− mice were exposed to chronic UV irradiation. Autochthonous tumors developed earlier in the transgenic mice than the wild-type mice. ^ Collectively, the data show that TGF-α produced by tumor cells induces proliferation of keratinocytes, leading to epidermal hyperplasia overlying malignant melanoma associated with loss of IFN-β and enhanced angiogenesis, tumorigenicity and metastasis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The histology of healing in a tooth extraction socket has been described in many studies. The focus of research in bone biology and healing is now centered on molecular events that regulate repair of injured tissue. Rapid progress in cellular and molecular biology has resulted in identification of many signaling molecules (growth factors and cytokines) associated with formation and repair of skeletal tissues. Some of these include members of the transforming growth factor-β superfamily (including the bone morphogenetic proteins), fibroblast growth factors, platelet derived growth factors and insulin like growth factors. ^ Healing of a tooth extraction socket is a complex process involving tissue repair and regeneration. It involves chemotaxis of appropriate cells into the wound, transformation of undifferentiated mesenchymal cells to osteoprogenitor cells, proliferation and differentiation of committed bone forming cells, extracellular matrix synthesis, mineralization of osteoid, maturation and remodeling of bone. Current data suggests that these cellular events are precisely controlled and regulated by specific signaling molecules. A plethora of cytokines; have been identified and studied in the past two decades. Some of these like transforming growth factor beta (TGF-β), vascular endothelial growth factor (VEGF), platelet derived growth factor (PDGF) and fibroblast growth factors (FGFs) are well conserved proteins involved in the initial response to injury and repair in soft and hard tissue. ^ The purpose of this study was to characterize the spatial and temporal localization of TGF-βl, VEGF, PDGF-A, FGF-2 and BMP-2, and secretory IgA in a tooth extraction socket model, and evaluate correlation of spatial and temporal changes of these growth factors to histological events. The results of this study showed positive correlation of histological events to spatial and temporal localization of TGF-β1, BMP-2, FGF-2, PDGF-A, and VEGF in a rabbit tooth extraction model. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is the second most common farm of cancers and the second leading cause of cancer death for American women. Clinical studies indicate inflammation is a risk factor for breast cancer development. Among the cytokines and chemokines secreted by the infiltrating inflammatory cells, tumor necrosis factor a (TNFα) is considered one of the most important inflammatory factors involved in inflammation-mediated tumorigenesis. ^ Here we found that TNFα/IKKβ signaling pathway is able to increase tumor angiogenesis through activation of mTOR pathway. While investigating which molecule in the mTOR pathway involved in TNFα/IKKβ-mediated mTOR activation, our results showed that IKKβ physically interacts with and phosphorylates TSC1 at Ser487 and Ser511 in vitro and in vivo. Phosphorylation of TSC1 by IKKβ inhibits its association with TSC2, alters TSC2 membrane localization, and thereby activates mTOR. In vitro angiogenesis assays and orthotopic breast cancer model reveals that phosphorylation of TSC1 by IKKβ enhances VEGF expression, angiogenesis and culminates in tumorigenesis. Furthermore, expression of activated IKKβ is associated with TSC1 Ser511 phosphorylation and VEGF production in multiple tumor types and correlates with poor clinical outcome of breast cancer patients. ^ Furthermore, dysregulation of tumor suppressor FOXO3a contributes to the development of breast cancer. We found that overexpression of IKKβ led to inhibition of FOXO3a-mediated transactivation activity. While investigating the underlying mechanisms of IKKβ-mediated dysregulation of FOXO3a, our results showed that IKKβ physically associated with FOXO3a and phosphorylated FOXO3a at Ser644 in vitro and in vivo. The phosphorylation of FOXO3a by IKKβ altered its subcellular localization from nucleus to cytoplasm and promoted its degradation through ubiquitin-proteasome pathway. Mutation of FOXO3a at Ser644 prevented IKKβ-induced ubiquitination and degradation. In vitro cell proliferation assay and orthotopic breast cancer model revealed that phosphorylation of FOXO3a by IKKβ overrode FOXO3a-mediated repression of tumor progression. ^ In conclusion, our findings identify IKKβ-mediated suppressions of both TSC1 and FOXO3a are critical for inflammation-mediated breast cancer development through increasing tumor angiogenesis and evading apoptosis, respectively. Understanding the role of IKKβ in both FOXO3a and TSC/mTOR signaling pathways provides a critical insight of inflammation-mediated diseases and may provide a target for clinical intervention in human breast cancer. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lysophosphatidic acid (LPA) is a bioactive phospholipid and binds to its receptors, a family of G protein-coupled receptors (GPCR), which initiates multiple signaling cascades and leads to activation of several transcription factors, including NF-κB. NF-κB critically regulates numerous gene expressions, and is persistently active in many diseases. In our previous studies, we have demonstrated that LPA-induced NF-κB activation is dependent on a novel scaffold protein, CARMA3. However, how CARMA3 is recruited to receptor remains unknown. β-Arrestins are a family of proteins involved in desensitization of GPCR signaling. Additionally, β-arrestins function as signaling adaptor proteins, and mediate multiple signaling pathways. Therefore, we have hypothesized that β-arrestins may link CARMA3 to LPA receptors, and facilitate LPA-induced NF-κB activation. ^ Using β-arrestin-deficient MEFs, we found that β-arrestin 2, but not β-arrestin 1, was required for LPA-induced NF-κB activation. Also, we showed that the expression of NF-κB-dependent cytokines, such as interlukin-6, was impaired in β-arrestin 2-deficient MEFs. Mechanistically, we demonstrated the inducible association of endogenous β-arrestin 2 and CARMA3, and we found the CARD domain of CARMA3 interacted with 60-320 residues of β-arrestin 2. To understand why β-arrestin 2, but not β-arrestin 1, mediated NF-κB activation, we generated β-arrestin mutants. However, some mutants degraded quickly, and the rest did not rescue NF-κB activation in β-arrestin-deficient MEFs, though they had similar binding affinities with CARMA3. Therefore, it indicates that slight changes in residues may determine the different functions of β-arrestins. Moreover, we found β-arrestin 2 deficiency impaired LPA-induced IKK kinase activity, while it did not affect LPA-induced IKKα/β phosphorylation. ^ In summary, our results provide the genetic evidence that β-arrestin 2 serves as a positive regulator in NF-κB signaling pathway by connecting CARMA3 to LPA receptors. Additionally, we demonstrate that β-arrestin 2 is required for IKKα/β activation, but not for the inducible phosphorylation of IKKα/β. Because the signaling pathways around the membrane-proximal region of LPA receptors and GPCRs are quite conserved, our results also suggest a possible link between other GPCRs and CARMA3-mediated NF-κB activation. To fully define the role of β-arrestins in LPA-induced NF-κB signaling pathways will help to identify new drug targets for clinical therapeutics.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catenins were first characterized as linking the cytoplasmic domains of cadherin cell-cell adhesion molecules to the cortical actin cytoskeleton. In addition to their essential role in modulating cadherin adhesion, catenins have more recently been indicated to participate in cell and developmental signaling pathways. $\beta$-catenin, for example, associates directly with receptor tyrosine kinases and transcription factors such as LEF-1/TCF, and tranduces developmental signals within the Wnt pathway. $\beta$-catenin also appear to a role in regulating cell proliferation via its interaction with the tumor supressor protein APC. I have employed the yeast two-hybrid method to reveal that fascin, a bundler of actin filaments, binds to $\beta$-catenin's central Armadillo-repeat domain. The $\beta$-catenin-fascin interaction exists in cell lines as well as in animal brain tissues as revealed by immunoprecipitation analysis, and substantiated in vitro with purified proteins. Fascin additionally binds to plakoglobin, which contains a more divergent Armadillo-repeat domain. Fascin and E-cadherin utilize a similar binding-site within $\beta$-catenin, such that they form mutually exclusive complexes with $\beta$-catenin. Fascin and $\beta$-catenin co-localize at cell-cell borders and dynamic cell leading edges of epithelial and endothelial cells. Total immunoprecipitable b-catein has several isoforms, only the hyperphosphorylated isoform 1 associated with fascin. An increased $\beta$-catenin-fascin interaction was observed in HGF stimulated cells, and in Xenopus embryos injected with src kinase RNAs. The increased $\beta$-catenin association with fascin is correlated with increased levels of $\beta$-catenin phosphorylation. $\beta$-catenin, but not fascin, can be readily phosphorylated on tyrosine in vivo following src injection of embryos, or in vitro following v-src addition to purified protein components. These observations suggest a role of $\beta$-catenin phosphorylation in regulating its interaction with fascin, and src kinase may be an important regulator of the $\beta$-catenin-fascin association in vivo. The $\beta$-catenin-fascin interaction represents a novel catenin complex, that may conceivably regulate actin cytoskeletal structures, cell adhesion, and cellular motility, perhaps in a coordinate manner with its functions in cadherin and APC complexes. ^