35 resultados para Site-directed mutagenesis
Resumo:
The antigen recognition site of antibodies is composed of residues contributed by the variable domains of the heavy and light chain subunits (VL and VH domains). VL domains can catalyze peptide bond hydrolysis independent of VH domains (Mei S et al. J Biol Chem. 1991 Aug 25;266(24):15571-4). VH domains can bind antigens noncovalently independent of V L domains (Ward et al. Nature. 1989 Oct 12;341(6242):544-6). This dissertation describe the specific hydrolysis of fusion proteins containing the hepatitis C virus coat protein E2 by recombinant hybrid Abs composed of the heavy chain of a high affinity anti-E2 IgG1 paired with light chains expressing promiscuous catalytic activity. The proteolytic activity was evident from electrophoresis assays using recombinant E2 substrates containing glutathione S-transferase (E2-GST) or FLAG peptide (E2-FLAG) tags. The proteolytic reaction proceeded more rapidly in the presence of the hybrid IgG1 compared to the unpaired light chain, consistent with accelerated peptide bond hydrolysis due to noncovalent VH domain-E2 recognition. An active site-directed inhibitor of serine proteases inhibited the proteolytic activity of the hybrid IgG, indicating a serine protease mechanism. Binding studies confirmed that the hybrid IgG retained detectable noncovalent E2 recognition capability, although at a level smaller than the wildtype anti-E2 IgG. Immunoblotting of E2-FLAG treated with the hybrid IgG suggested a scissile bond within E2 located ∼11 kD from the N terminus of the protein. E2-GST was hydrolyzed by the hybrid IgG at peptide bonds located in the GST tag. The differing cleavage pattern of E2-FLAG and E2-GST can be explained by the split-site model of catalysis, in which conformational differences in the E2 fusion protein substrates position alternate peptide bonds in register with the antibody catalytic subsite despite a common noncovalent binding mechanism. This is the first proof-of principle that the catalytic activity of a light chain can be rendered antigen-specific by pairing with a noncovalently binding heavy chain subunit. ^
Resumo:
Gene silencing due to promoter methylation is an alternative to mutations and deletions, which inactivate tumor suppressor genes (TSG) in cancer. We identified RIL by Methylated CpG Island Amplification technique as a novel aberrantly methylated gene. RIL is expressed in normal tissues and maps to the 5q31 region, frequently deleted in leukemias. We found methylation of RIL in 55/80 (69%) cancer cell lines, with highest methylation in leukemia and colon. We also observed methylation in 46/80 (58%) primary tumors, whereas normal tissues showed substantially lower degrees of methylation. RIL expression was lost in 13/16 cancer cell lines and was restored by demethylating agent. Screening of 38 cell lines and 13 primary cancers by SSCP revealed no mutations in RIL, suggesting that methylation and LOH are the primary inactivation mechanisms. Stable transfection of RIL into colorectal cancer cells resulted in reduction in cell growth, clonogenicity, and increased apoptosis upon UVC treatment, suggesting that RIL is a good candidate TSG. ^ In searching for a cause of RIL hypermethylation, we identified a 12-bp polymorphic sequence around the transcription start site of the gene that creates a long allele containing 3CTC repeat. Evolutionary studies suggested that the long allele appeared late in evolution due to insertion. Using bisulfite sequencing, in cancers heterozygous for RIL, we found that the short allele is 4.4-fold more methylated than the long allele (P = 0.003). EMSA results suggested binding of factor(s) to the inserted region of the long allele, but not to the short. EMSA mutagenesis and competition studies, as well as supershifts using nuclear extracts or recombinant Sp1 strongly indicated that those DNA binding proteins are Sp1 and Sp3. Transient transfections of RIL allele-specific expression constructs showed less than 2-fold differences in luciferase activity, suggesting no major effects of the additional Sp1 site on transcription. However, stable transfection resulted in 3-fold lower levels of transcription from the short allele 60 days post-transfection, consistent with the concept that the polymorphic Sp1 site protects against time-dependent silencing. Thus, an insertional polymorphism in the RIL promoter creates an additional Sp1/Sp3 site, which appears to protect it from silencing and methylation in cancer. ^
Resumo:
DNA interstrand crosslinks (ICLs) are among the most toxic type of damage to a cell. Many ICL-inducing agents are widely used as therapeutic agents, e.g. cisplatin, psoralen. A bettor understanding of the cellular mechanism that eliminates ICLs is important for the improvement of human health. However, ICL repair is still poorly understood in mammals. Using a triplex-directed site-specific ICL model, we studied the roles of mismatch repair (MMR) proteins in ICL repair in human cells. We are also interested in using psoralen-conjugated triplex-forming oligonucleotides (TFOs) to direct ICLs to a specific site in targeted DNA and in the mammalian genomes. ^ MSH2 protein is the common subunit of two MMR recognition complexes, and MutSα and MutSβ. We showed that MSH2 deficiency renders human cell hypersensitive to psoralen ICLs. MMR recognition complexes bind specifically to triplex-directed psoralen ICLs in vitro. Together with the fact that psoralen ICL-induced repair synthesis is dramatically decreased in MSH2 deficient cell extracts, we demonstrated that MSH2 function is critical for the recognition and processing of psoralen ICLs in human cells. Interestingly, lack of MSH2 does not reduce the level of psoralen ICL-induced mutagenesis in human cells, suggesting that MSH2 does not contribute to error-generating repair of psoralen ICLs, and therefore, may represent a novel error-free mechanism for repairing ICLs. We also studied the role of MLH1, anther key protein in MMR, in the processing of psoralen ICLs. MLH1-deficient human cells are more resistant to psoralen plus UVA treatment. Importantly, MLH1 function is not required for the mutagenic repair of psoralen ICLs, suggesting that it is not involved in the error-generating repair of this type of DNA damage in human cells. ^ These are the first data indicating mismatch repair proteins may participate in a relatively error-free mechanism for processing psoralen ICL in human cells. Enhancement of MMR protein function relative to nucleotide excision repair proteins may reduce the mutagenesis caused by DNA ICLs in humans. ^ In order to specifically target ICLs to mammalian genes, we identified novel TFO target sequences in mouse and human genomes. Using this information, many critical mammalian genes can now be targeted by TFOs.^
Involvement of HMGB1 in the repair of DNA adducts and the responses to DNA damage in mammalian cells
Resumo:
High mobility group protein B1 (HMGB1) is a multifunctional protein with roles in chromatin structure, transcription, V(D)J recombination, and inflammation. HMGB1 also binds to and bends damaged DNA, but the biological consequence of this interaction is not clearly understood. We have shown previously that HMGB1 binds cooperatively with nucleotide excision repair (NER) damage recognition proteins XPA and RPA to triplex-directed psoralen DNA interstrand crosslinks (ICLs). Based on this we hypothesized that HMGB1 is enhancing the repair of DNA lesions, and through this role, is affecting DNA damage-induced mutagenesis and cell survival. Because HMGB1 is also a chromatin protein, we further hypothesized that it is acting to facilitate chromatin remodeling at the site of the DNA damage, to allow access of the repair machinery to the DNA lesion. We demonstrated here that HMGB1 could bind to triplex-directed psoralen ICLs in a complex with NER proteins XPC-RAD23B, XPA and RPA, which occurred in the presence or absence of DNA. Supporting these findings, we demonstrated that HMGB1 enhanced repair of triplex-directed psoralen ICLs (by nucleotide incorporation), as well as removal of UVC irradiation-induced DNA lesions from the genome (by radioimmunoassay). We also explored HMGB1's role in chromatin remodeling upon DNA damage. Immunoblotting demonstrated that, in contrast to HMGB1 proficient cells, cells lacking HMGB1 showed no increase in histone acetylation after UVC irradiation. Additionally, purified HMGB1 protein enhanced chromatin formation in an in vitro chromatin assembly system. However, HMGB1 also has a role in DNA repair in the absence of chromatin, as shown by measuring UVC-induced nucleotide incorporation on a naked substrate. Upon exploration of HMGB1's effect on several cellular outcomes of DNA damage, we found that mammalian cells lacking HMGB1 were hypersensitive to DNA damage induced by psoralen plus UVA irradiation or UVC radiation, showing less survival and increased mutagenesis. These results reveal a new role for HMGB1 in the error-free repair of DNA lesions in a chromosomal context. As strategies targeting HMGB1 are currently in development for treatment of sepsis and rheumatoid arthritis, our findings draw attention to potential adverse side effects of anti-HMGB1 therapy in patients with inflammatory diseases. ^
Resumo:
The hypothesis addressed in this project was that novel variants of naturally occurring human glutathione S-transferase P1 (GSTP1) can be created by random mutagenesis of the GSTP1 active site to yield polypeptides with increased enzymatic activity against electrophilic substrates. Specifically, the mutant proteins would metabolize and inactivate selected electrophiles more efficiently than wild-type GSTP1 and confer significant cytoprotection, as measured by reduced apoptosis and increased clonogenic survival. Glutathione S-transferase P1, a major electrophile metabolizing and detoxifying enzyme, is encoded by a polymorphic genetic locus. This locus contains nucleotide transitions in the region encoding the active site of the peptide that yields proteins with significant structural and functional differences. The method of Degenerate Oligonucleotide Mediated Random Mutagenesis (DOMRM) was used to generate cDNAs encoding unique GSTP1 polypeptides with mutations within electrophile binding site (H-site) while leaving the glutathione binding site unaffected. A prokaryotic expression library of the mutant GSTP1 polypeptides was created and screened for increased resistance to cisplatin. This screen resulted in the isolation of 96 clones representing 22 distinct mutant cDNA sequences. To investigate the effects of the changes in the H-site on the biological activity of GSTP1, the cDNA of wild-type GSTP1c and two of the identified mutants were stably transfected into human LNCaP-Pro5 prostate cancer cells that do not endogenously express GSTP1. Wild-type transfectants were resistant to doxorubicin-induced apoptosis and displayed increased clonogenic survival compared to vector controls. However, contrary to the hypothesis, in both assays the mutant transfectants were no more resistant to doxorubicin than the wild-type transfectants. To elucidate the mechanisms underlying GSTP1-mediated survival, an in-vitro assay was developed to determine whether active GSTP1 protein directly metabolizes doxorubicin by conjugation to reduced glutathione (GSH). Although GSH did promote the appearance of a unique doxorubicin conjugate, conjugate formation was not substantially increased by the addition of GSTP1 in a variety of reaction conditions. ^