45 resultados para Protéine kinase C
Resumo:
Proper execution of mitosis requires the accurate segregation of replicated DNA into each daughter cell. The highly conserved mitotic kinase AIR-2/Aurora B is a dynamic protein that interacts with subsets of cofactors and substrates to coordinate chromosome segregation and cytokinesis in Caenorhabdiris elegans. To identify components of the AIR-2 regulatory pathway, a genome-wide RNAi-based screen for suppressors of air-2 temperature-sensitive mutant lethality was conducted. Here, I present evidence that two classes of suppressors identified in this screen are bona fide regulators of the AIR-2 kinase. The strongest suppressor cdc-48.3, encodes an Afg2/Spaf-related Cdc48-like AAA+ ATPase that regulates AIR-2 kinase activity and stability during C. elegans embryogenesis. Loss of CDC-48.3 suppresses the lethality of air-2 mutant embryos, marked by the restoration of the dynamic behavior of AIR-2 and rescue of chromosome segregation and cytokinesis defects. Loss of CDC-48.3 leads to mitotic delays and abnormal accumulation of AIR-2 during late telophase/mitotic exit. In addition, AIR-2 kinase activity is significantly upregulated from metaphase through mitotic exit in CDC-48.3 depleted embryos. Inhibition of the AIR-2 kinase is dependent on (1) a direct physical interaction between CDC-48.3 and AIR-2, and (2) CDC-48.3 ATPase activity. Importantly, the increase in AIR-2 kinase activity does not correlate with the stabilization of AIR-2 in late mitosis. Hence, CDC-48.3 is a bi-functional inhibitor of AIR-2 that is likely to act via distinct mechanisms. The second class of suppressors consists of psy-2/smk-1 and pph-4.1, which encode two components of the conserved PP4 phosphatase complex that is essential for spindle assembly, chromosome segregation, and overall mitotic progression. AIR-2 and its substrates are likely to be targets of this complex since mitotic AIR-2 kinase activity is significantly increased during mitosis when either PSY-2/SMK-1 or PPH-4.l is depleted. Altogether, this study demonstrates that during the C. elegans embryonic cell cycle, regulators including the CDC-48.3 ATPase and PP4 phosphatase complex interact with and control the kinase activity, targeting behavior and protein stability of the Aurora B kinase to ensure accurate and timely progression of mitosis. ^
Resumo:
Deregulation of kinase activity is one example of how cells become cancerous by evading evolutionary constraints. The Tousled kinase (Tsl) was initially identified in Arabidopsis thaliana as a developmentally important kinase. There are two mammalian orthologues of Tsl and one orthologue in C. elegans, TLK-1, which is essential for embryonic viability and germ cell development. Depletion of TLK-1 leads to embryonic arrest large, distended nuclei, and ultimately embryonic lethality. Prior to terminal arrest, TLK-1-depleted embryos undergo aberrant mitoses characterized by poor metaphase chromosome alignment, delayed mitotic progression, lagging chromosomes, and supernumerary centrosomes. I discovered an unanticipated requirement for TLK-1 in mitotic spindle assembly and positioning. Normally, in the newly-fertilized zygote (P0) the maternal pronucleus migrates toward the paternal pronucleus at the posterior end of the embryo. After pronuclear meeting, the pronuclear-centrosome complex rotates 90° during centration to align on the anteroposterior axis followed by nuclear envelope breakdown (NEBD). However, in TLK-1-depleted P0 embryos, the centrosome-pronuclear complex rotation is significantly delayed with respect to NEBD and chromosome congression, Additionally, centrosome positions over time in tlk-1(RNAi) early embryos revealed a defect in posterior centrosome positioning during spindle-pronuclear centration, and 4D analysis of centrosome positions and movement in newly fertilized embryos showed aberrant centrosome dynamics in TLK-1-depleted embryos. Several mechanisms contribute to spindle rotation, one of which is the anchoring of astral microtubules to the cell cortex. Attachment of these microtubules to the cortices is thought to confer the necessary stability and forces in order to rotate the centrosome-pronuclear complex in a timely fashion. Analysis of a microtubule end-binding protein revealed that TLK-1-depleted embryos exhibit a more stochastic distribution of microtubule growth toward the cell cortices, and the types of microtubule attachments appear to differ from wild-type embryos. Additionally, fewer astral microtubules are in the vicinity of the cell cortex, thus suggesting that the delayed spindle rotation could be in part due to a lack of appropriate microtubule attachments to the cell cortex. Together with recently published biochemical data revealing the Tousled-like kinases associate with components of the dynein microtubule motor complex in humans, these data suggest that Tousled-like kinases play an important role in mitotic spindle assembly and positioning.
Resumo:
Chromosome segregation is a critical step during cell division to avoid aneuploidy and promote proper organismal development. Correct sister chromatid positioning and separation during mitosis helps to achieve faithful transmission of genetic material to daughter cells. This prevents improper chromosome partitioning that can potentially result in extrachromosomal fragments, increasing the tumorigenic potential of the cells. The kinetochore is a protenaicious structure responsible for the initiation and orchestration of chromosome movement during mitosis. This highly conserved structure among eukaryotes is required for chromosome attachment to the mitotic spindle and failure to assemble the kinetochore results in aberrant chromosome segregation. Thus elucidating the mechanism of kinetochore assembly is important to have a better understanding of the regulation that controls chromosome segregation. Our previous work identified the C. elegans Tousled-like kinase (TLK-1) as a mitotic kinase and depletion of TLK-1 results in embryonic lethality, characterized by nuclei displaying poor mitotic chromosome alignment, lagging chromosome, and chromosome bridges during anaphase. Additionally, previous studies from our group revealed that TLK-1 is phosphorylated independently by Aurora B at serine 634, and by CHK-1 at threonine T610. The research presented herein reveals that both phosphorylated forms of TLK-1 associate with the kinetochore during mitosis. Moreover, by systematic depletion of kinetochore proteins, I uncovered that pTLK-1 is bona fide kinetochore component that is located at the outer kinetochore layer, influencing the microtubule-binding interface. I also demonstrated that TLK-1 is necessary for the kinetochore localization of the microtubule interacting proteins CLS-2 and LIS-1 and I show that embryos depleted of TLK-1 presented an aberrant twisted kinetochore pattern. Furthermore, I established that the inner kinetochore protein KNL-2 is an in vitro substrate of TLK-1 indicating a possible role of TLK-1 in regulating centromeric assembly. Collectively, these results suggest a novel role for the Tousled-like kinase in regulation of kinetochore assembly and microtubule dynamics and demonstrate the necessity of TLK-1 for proper chromosome segregation in C. elegans.
Resumo:
Proviral integration site for Moloney murine leukemia virus (Pim) kinases are Ser/Thr/Tyr kinases. They modulate B-cell development but become oncoproteins and promote cancer development once overexpressed. Containing three isoforms, Pim-1, -2 and -3 are known to phosphorylate various substrates that regulate transcription, translation, cell cycle, and survival pathways in both hematological and solid tumors. Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma. Elevated Pim kinase levels are common in MCL, and it negatively correlates with patient outcome. SGI-1776 is a small molecule inhibitor selective for Pim-1/-3. We hypothesize that SGI-1776 treatment in MCL will inhibit Pim kinase function, and inhibition of downstream substrates phosphorylation will disrupt transcriptional, translational, and cell cycle processes while promoting apoptosis. SGI-1776 treatment induced moderate to high levels of apoptosis in four MCL cell lines (JeKo-1, Mino, SP-53 and Granta-519) and peripheral blood mononuclear cells (PBMCs) from MCL patients. Phosphorylation of transcription and translation regulators, c-Myc and 4E-BP1 declined in both model systems. Additionally, levels of short-lived Mcl-1 mRNA and protein also decreased and correlated with decline of global RNA synthesis. Collectively, our investigations highlight Pim kinases as viable drug targets in MCL and emphasize their roles in transcriptional and translational regulation. We further investigated a combination strategy using SGI-1776 with bendamustine, an FDA-approved DNA-damaging alkylating agent for treating non-Hodgkin’s lymphoma. We hypothesized this combination will enhance SGI-1776-induced transcription and translation inhibition, while promoting bendamustine-triggered DNA damage and inducing additive to synergistic cytotoxicity in B-cell lymphoma. Bendamustine alone resulted in moderate levels of apoptosis induction in MCL cell lines (JeKo-1 and Mino), and in MCL and splenic marginal zone lymphoma (a type of B-cell lymphoma) primary cells. An additive effect in cell killing was observed when combined with SGI-1776. Expectedly, SGI-1776 effectively decreased global RNA and protein synthesis levels, while bendamustine significantly inhibited DNA synthesis and generated DNA damage response. In combination, intensified inhibitory effects in DNA, RNA and protein syntheses were observed. Together, these data suggested feasibility of using Pim kinase inhibitor in combination with chemotherapeutic agents such as bendamustine in B-cell lymphoma, and provided foundation of their mechanism of actions in lymphoma cells.
Resumo:
In this thesis, we investigated the regulation of the nuclear proto-oncogene, c-fos by estrogen in vivo. In the uterus, estrogen causes a rapid, dramatic and transient induction of c-fos mRNA and this occurs by transcriptional activation. We have discovered a previously unrecognized regulatory mechanism by which fos becomes desensitized to estrogen following the transient induction. We investigated three aspects of this desensitization: (1) the kinetics and general characteristics of the phenomenon; (2) the molecular mechanism of the desensitization; and (3) the relationship of desensitization to estrogen stimulated DNA synthesis. The desensitization occurs between 3-24 hours after initial hormonal stimulation and is reversible within 72 hours. The desensitization is not species specific, in that it occurs in both the rat and mouse. The desensitization also occurs in at least two estrogen responsive tissues, the uterus and vagina. The desensitization is not unique to c-fos, since both c-myc and c-jun show similar patterns of desensitization. However, the desensitization is not observed with creatine kinase B (CKB), indicating that not all estrogen inducible genes become desensitized. In the second general area, we determined the desensitization is at the transcriptional level. The desensitization is homologous, but not heterologous, since estrogen induction does not desensitize c-fos to other agents. Other studies show that the desensitization is not due to the lack of functional estrogen receptors. Taken together, these findings suggest that the desensitization occurs at the level of the estrogen responsive element. In the third major area, we demonstrated that the desensitization appears to be related to estrogen induced DNA synthesis. Support for this suggestion comes from the observation that short acting estrogens which induce fos, but not DNA synthesis, do not produce desensitization. ^
Resumo:
Overexpression and/or amplification of HER2/neu is frequently detected in many human cancers. Activation of p185 tyrosine kinase can be achieved by point mutation, overexpression, deletion, and heterodimerization with other class I receptors. In this study I investigated the signal transduction pathways mediating the oncogenic signal of the point mutation-activated rat p185. I demonstrated that tyrosine phosphorylation of Shc and formation of Shc/Grb2 complex correlated to the transformation of NIH3T3 cells caused by the point mutation-activated rat HER2/neu. Furthermore, I observed that association with Shc was severely impaired by deletion of most of the major autophosphorylation sites of the point-mutated p185. The truncated p185 product, however, fully retained its ability to transform NIH3T3 cells, induce Shc tyrosine phosphorylation and Shc/Grb2 complex formation. These results suggest that tyrosine phosphorylation of Shc which allows formation of Shc/Grb2 complex may play an important role in cell transformation induced by the point mutation-activated p185, and that stable binding to mutant p185 may not be necessary for Shc to mediate this signaling pathway.^ Recent studies have suggested that formation of the complex containing Sos, Grb2 and Shc is important in coupling receptor tyrosine kinases to the Ras signaling pathway. To clarify the role of this trimer in the oncogenic signaling of the activated p185, I set out to interfere with the protein-protein interactions in Shc/Grb2/Sos complex by introducing Grb2 mutants with deletions in either amino- ($\Delta$N-Grb2) or carboxyl- ($\Delta$C-Grb2) terminal SH3 domains into B104-1-1 cells derived from NIH3T3 cells that express the point mutation-activated HER-2/neu. I found that the transformed phenotypes of the B104-1-1 cells were largely reversed by expression of the $\Delta$N-Grb2. The effect of the $\Delta$C-Grb2 on phenotypic reversion was much weaker. Biochemical analysis showed that the $\Delta$N-Grb2 was able to associate Shc but not the activated p185 nor Sos, while the $\Delta$C-Grb2 bound to Shc, the activated p185, and Sos. The p185-mediated Ras activation was severely inhibited by the $\Delta$N-Grb2 but not the $\Delta$C-Grb2. Taken together, these data demonstrate that interruption of the interaction between Shc and the endogenous Grb2 by the $\Delta$N-Grb2 is able to impair the oncogenic signaling of the mutation-activated p185, indicating that (i) the $\Delta$N-Grb2 functions as a strong dominant-negative mutant, (ii) Shc/Grb2/Sos pathway plays a major role in mediating the oncogenic signal of the mutation-activated p185. Unlike the $\Delta$N-Grb2, the $\Delta$C-Grb2 appears to be a relatively weak dominant-negative mutant, probably due to its ability to largely fulfill the biological functions of the wild-type Grb2. ^
Resumo:
In this thesis, I investigated the effect of cylic AMP-dependent protein kinase (PKA) on v-Mos kinase activity. Increase in PKA activity in vivo brought about either by forskolin treatment or by overexpression of the PKA catalytic subunit resulted in a significant inhibition of v-Mos kinase activity. The purified PKA catalytic subunit was able to phosphorylate recombinant p37$\rm\sp{v-mos}$ in vitro, suggesting that the mechanism of in vivo inhibition of v-Mos kinase involves direct phosphorylation by PKA. Ser-263 was identified as a residue that is normally phosphorylated at a very low level but whose phosphorylation is dramatically increased upon forskolin treatment. Consistent with the inhibitory role of Ser-263 phosphorylation, the Ala-263 mutant of v-Mos was not inhibited by forskolin treatment. Based on our results, we propose that the known inhibitory role of PKA in the initiation of oocyte maturation could be explained at least in part by its inhibition of Mos kinase.^ Combining tryptic phosphopeptide two-dimensional mapping analysis and in vitro mutagenesis studies, I identified Ser-56 as the major in vivo phosphorylation site on v-Mos. I studied the interrelationship between Ser-34 and Ser-56 phosphorylation in regulating v-Mos function. After site-directed mutagenesis to substitute serine residues with alanine or glutamic acid in different combinations to mimick unphosphorylated and phosphorylated serines respectively, various v-Mos mutants were expressed in COS-1 cells. As expected, Ala-34 mutant of v-Mos had very low (less 5% of wild type) kinase activity. The Ala-56 mutant had kinase activity 50% that of wild type. Surprisingly, the Ala-34 Ala-56 double mutant and the Ala-56 mutant exhibited identical kinase activity. On the other hand, Ala-34 Glu-56 double mutant had reduced kinase activity comparable to Ala-34 mutant. These results suggest that the phosphorylation at Ser-56 may serve to inhibit the activation of newly synthesized Mos protein. As predicted from Xenopus c-Mos studies, Glu-34 mutant of v-Mos was highly active (125% that of wild type). Interestingly, consistant with the model involving an inhibitory role of Ser-56 phosphorylation, the Glu-34 Glu-56 double mutant was totally inactive as a kinase. Moreover in my experiments, there was a perfect correlation between the level of v-Mos kinase activity of various mutants and their transforming activity. The latter is dependent upon MEK1 phosphorylation/ activation in v-mos transformed cells. Residues corresponding to both v-Mos Ser-34 and Ser-56 are evolutionarily conserved in c-Mos. Therefore, the cytostatic factor function of c-Mos may be regulated in the same manner as v-Mos kinase activity.^ It has been known that v-mos transforms cells by affecting G1 phase progression of the cell cycle. Here I showed that mos induces cyclin D1 expression in mos transformed NIH 3T3 cells and NRK 6m2 cells, and this induced level was found to be unaffected by serum starvation. Consequently, cyclin D1-Cdk4 and cyclin E-Cdk2 activities increase, and retinoblastoma protein is hyperphosphorylated. Based on studies from several laboratories, these findings suggest that increased amount of cyclin D1-Cdk4 complexes ties up the limited amount of cyclin E-Cdk2 inhibitors (e.g. p27), causing the activation of cyclin E-Cdk2. My results indicate that activation of key cell cycle regulators of G1 phase may be important for cellular transformation by mos. (Abstract shortened by UMI.) ^
Resumo:
The purpose of this study was to investigate the role of the c-KIT receptor in the progression of human melanoma and the mechanism(s) for the regulation of c-KIT gene expression in human melanoma.^ The molecular changes associated with the transition of melanoma cells from radial growth phase (RGP) to vertical growth phase (VGP) (metastatic phenotype) are not well-defined. Expression of the tyrosine-kinase receptor c-KIT progressively decreases during local tumor growth and invasion of human melanomas. To provide direct evidence that the metastasis of human melanoma is associated with the loss of c-KIT expression, highly metastatic A375SM cells, which express very low or undetectable levels of c-KIT, were tranduced with the human c-KIT gene. We demonstrated that enforced c-KIT expression in highly metastatic human melanoma cells significantly suppressed their tumorigenicity and metastatic propensity in nude mice. In addition, we showed that the ligand for c-KIT, SCF, induces apoptosis in human melanoma cells expressing c-KIT under both in vitro and in vivo conditions. These results suggest that loss of c-KIT receptor may allow malignant melanoma cells to escape SCF/c-KIT-mediated apoptosis, thus contributing to tumor growth and eventually metastasis.^ Furthermore, we investigated the possible mechanism(s) for the down-regulation of c-KIT gene expression in malignant melanoma. Sequence analysis of the c-KIT promoter indicated that this promoter contains several consensus binding-site sequences including three putative AP2 and two Myb sites. Although Myb was shown to be associated with c-KIT expression in human hemotopoietic cells, we found no correlation between c-KIT expression and Myb expression in human melanoma cell lines. In contrast, we showed that c-KIT expression directly correlates with expression of AP2 in human melanoma cells. We found that highly metastatic cells do not express the transcription factor AP2. Expression of AP2 in A375SM cells (c-KIT-negative and AP2-negative) was enough to restore luciferase activity driven by the c-KIT promoter in a dose-dependent manner. On the other hand, co-expression of the dominant-negative form of AP2 (AP2B) in Mel-501 cells (c-KIT-positive and AP2-positive) resulted in two-fold reduction in luciferase activity. Electrophoretic mobility shift assays revealed that the c-KIT promoter contains functional AP2 binding sites which could associate with AP2 protein. Endogenous c-KIT gene expression levels were elevated in AP2 stably-transfected human melanoma A375SM cells. Expression of exogenous AP2 in A375SM cells inhibited their tumorigenicity and metastatic potential in nude mice. The c-KIT ligand, SCF, also induced apoptosis in the AP2 stably-transfected A375SM cells. The identification of AP2 as an important regulator for c-KIT expression suggests that AP2 may have tumor growth and metastasis inhibitory properties, possibly mediated through c-KIT/SCF effects on apoptosis of human melanoma cells. Since AP2 binding sites were found in the promoters of other genes involved in the progression of human melanoma, such as MMP2 (72 kDa collagenase), MCAM/MUC18 and P21/WAF-1, our findings suggest that loss of AP2 expression might be a crucial event in the development of malignant melanoma. ^
Resumo:
The multifunctional Ca$\sp{2+}$/calmodulin-dependent protein kinase II (CaM kinase) is a Ser/Thr directed protein kinase that participates in diverse Ca$\sp{2+}$ signaling pathways in neurons. The function of CaM kinase depends upon the ability of subunits to form oligomers and to interact with other proteins. Oligomerization is required for autophosphorylation which produces significant functional changes that include Ca$\sp{2+}$/calmodulin-independent activity and calmodulin trapping. Associations with other proteins localize CaM kinase to specific substrates and effectors which serves to optimize the efficiency and speed of signal transduction. In this thesis, we investigate the interactions that underlie the appropriate positioning of CaM kinase activity in cells. We demonstrate that the subcellular distribution of CaM kinase is dynamic in hippocampal slices exposed to anoxic/aglycemic insults and to high K$\sp{+}$-induced depolarization. We determine the localization of CaM kinase domains expressed in neurons and PC-12 cells and find that the C-terminal domain of the $\alpha$ subunit is necessary for localization to dendrites. Moreover, monomeric forms of the enzyme gain access to the nucleus. Attempts made to identify novel CaM kinase binding proteins using the yeast two-hybrid system resulted in the isolation of hundreds of positive clones. Those that have been sequenced are identical to CaM kinase isoforms. Finally, we report the discovery of specific regions within the C-terminal domain that are necessary and sufficient for subunit-subunit interactions. Differences between the $\alpha$ and $\beta$ isoforms were discovered that indicate unique structural requirements for oligomerization. A model for how CaM kinase subunits interact to form holoenzymes and how structural heterogeneity might influence CaM kinase function is presented. ^
Resumo:
Phosphatidylinositol 3-kinase (PI3K) phosphorylates membrane constituent phosphatidylinositols, producing second messengers that link membrane bound receptor signals to cellular proliferation and survival. PI3K, a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit, can be activated through induced association with other signaling molecules. The p85 subunit serves to both stabilize and inactivate p110. The inhibitory activity of P85 is relieved by occupancy of the N terminal SH2 domain by phosphorylated tyrosine. PI3K becomes phosphorylated and activated subsequent to a variety of stimuli. Indeed, Src family kinases have been demonstrated to phosphorylate p85 at tyrosine 688, but the role of phosphorylation in PI3K function is unclear. We decided to evaluate the importance of tyrosine phosphorylation to PI3K activity. We demonstrate that tyrosine phosphorylated p85 is associated with a higher specific activity than is non-phosphorylated PI3K. Wild type p85 inhibits PI3K enzyme activity, a process accentuated by mutation of tyrosine 688 to alanine and reversed by mutation to aspartate which functions as a phosphotyrosine mimic in multiple systems. Strikingly, the Y688D mutation completely reverses the p85 inhibitory activity on cell viability and activation of downstream protein NFkB. We demonstrate that tyrosine phosphorylated Y688 or Y688D is sufficient to bind the p85 N terminal SH2 domain, either within full length p85 or in an isolated N terminal SH2 domain, suggesting the possibility of an intramolecular interaction between phosphorylated Y688 and the p85 N terminal SH2 domain that can relieve the p85-induced inhibition of p110. Further, we provide evidence that dephosphorylation of Y688 reduces phosphorylation-induced PI3K activity. We demonstrate that tyrosine phosphatase SHP-1 can physically associate with p85 in a SH2-mediated interaction with the C terminal tail of SHP-1. This association is concomitant with both p85 dephosphorylation and decreased PI3K activity. Altogether, our data suggests the phosphorylation state of p85 is the focal point of a novel mechanism for PI3K activity regulation. As PI3K has been shown to be involved in the vital physiological processes of cell proliferation and apoptosis, a thorough understanding of the regulation of this signaling protein may provide opportunities for the design of novel treatments for cancer. ^
Resumo:
DNA-directed nucleoside analogues, such as ara-C, fludarabine, and gemcitabine, are antimetabolites effective in the treatment of a variety of cancers. However, resistance to nucleoside analogue-based chemotherapy in treatments is still a major problem in therapy. Therefore, it is essential to develop rationales for optimizing the use of nucleoside analogues in combination with other anticancer drugs or modalities such as radiation. The present study focuses on establishing mechanism-based combination strategy to overcome resistance to nucleoside analogues. ^ I hypothesized that the cytostatic concentrations of nucleoside analogues may cause S-phase arrest by activating an S-phase checkpoint that consists of a series of kinases. This may allow cells to repair damaged DNA over time and spare cytotoxicity. Thus, the ability of cells to enact an S-phase arrest in response to incorporation of potentially lethal amounts of nucleoside analogue may serve as a mechanism of resistance to S-phase-specific agents. As a corollary, the addition of a kinase inhibitor, such as UCN-01, may dysregulate the checkpoint response and abrogate the survival of S-phase-arrested cells by suppression of the survival signaling pathways. Using gemcitabine as a model of S-phase-specific nucleoside analogues in human acute myelogenous leukemia ML-1 cells, I demonstrated that cells arrested in S-phase in response to cytostatic conditions. Proliferation continued after washing the cells into drug-free medium, suggesting S-phase arrest served as a resistance mechanism of cancer cells to spare cytotoxicity of nucleoside analogues. However, nontoxic concentrations of UCN-01 rapidly killed S-phase-arrested cells by apoptosis. Furthermore, the molecular mechanism for UCN-01-induced apoptosis in S-phase-arrested cells was through inhibition of survival pathways associated with these cells. In this regard, suppression of the PI 3-kinase-Akt-Bad survival pathway as well as the NF-κB signaling pathway were associated with induction of apoptosis in S-phase-arrested cells by UCN-01, whereas the Ras-Raf-MEK-ERK pathway appeared not involved. This study has provided the rationales and strategies for optimizing the design of effective combination therapies to overcome resistance to nucleoside analogues. In fact, a clinical trial of the combination of ara-C with UCN-01 to treat relapsed or refractory AML patients has been initiated at U.T.M.D. Anderson Cancer Center. ^
Resumo:
Overexpression of the receptor tyrosine kinase p185ErbB2 confers taxol resistance in breast cancers and activation of p34Cdc2 is required for taxol-induced apoptosis and cytotoxicity. Here, we investigated the underlying mechanisms and found that overexpression of p185 ErbB2 inhibits taxol-induced apoptosis through two branches to inhibit activation of p34Cdc2. ^ Overexpression of p185ErbB2 in MDA-MB-435 cells by transfection transcriptionally upregulated p21Cip1, which associates with p34Cdc2, inhibits taxol-mediated p34Cdc2 activation, delays cell entrance to G2/M phase, and thereby inhibits taxol-induced apoptosis. In p21Cip1 antisense-transfected MDA-MB-435 cells or in p21−/− MEF cells, p185ErbB2 was unable to inhibit taxol-induced apoptosis. Therefore, p21Cip1 participates in the regulation of a G2/M checkpoint that contributes to resistance to taxol-induced apoptosis in p185ErbB2-overexpressing breast cancer cells. ^ Direct phosphorylation on Tyrosine-15 of p34Cdc2 by p185 ErbB2 receptor tyrosine kinase inhibits p34Cdc2 activation. The wild-type p185ErbB2 but not the kinase-defective mutant, when overexpressed in breast cancer cells, can phosphorylate p34Cdc2 on tyrosine (Tyr)15, an inhibitory phosphorylation site of p34 Cdc2. The kinase domain of the ErbB2 receptor was sufficient for binding to p34Cdc2 and directly phosphorylating the recombinant Cdc2. Phosphospecific Cdc2-Tyr15 immunoblot analyses, immunocomplex kinase assays, and phospho-amino acid analyses revealed that p185ErbB2 specifically phosphorylates Cdc2 on Tyr15. Phosphorylation of Cdc2-Tyr15 by ErbB2 is modulated during cell cycle and corresponded with delayed cell entry into G2/M phase. The kinase-defective p185ErbB2, which incapable of phosphorylating Cdc2-Tyr15, failed to inhibit taxol-induced activation and apoptosis, whereas the wild-type and the constitutive-active p185ErbB2 did. Increased Cdc2-Tyr15 phosphorylation was found in Erb132-overexpressing tumors from breast cancer patients. Thus, direct phosphorylation of Cdc2-Tyr15 by p185 ErbB2 RTK in breast cancer cells inhibits taxol-induced p34 Cdc2 activation and apoptosis, thereby conferring taxol resistance. ^
Resumo:
T cell activation and expansion is essential for immune response against foreign antigens. However, uncontrolled T cell activity can be manifested as a number of lymphoid derived diseases such as autoimmunity, graft versus host disease, and lymphoma. The purpose of this research was to test the central hypothesis that the Jak3/Stat5 pathway is critical for T cell function. To accomplish this objective, two novel Jak3 inhibitors, AG490 and PNU156804, were identified and their effects characterized on Jak3/Stat5 activation and T cell growth. Inhibition of Jak3 selectively disrupted primary human T lymphocyte growth in response to Interleukin-2 (IL-2), as well as other γ c cytokine family members including IL-4, IL-7, IL-9, and IL-15. Inhibition of Jak3 ablated IL-2 induced Stat5 but not TNF-α mediated NF-κβ DNA binding. Loss of Jak3 activity did not affect T cell receptor mediated signals including activation of p56Lck and Zap70, or IL-2 receptor a chain expression. To examine the effects of Jak3/Stat5 inhibition within a mature immune system, we employed a rat heart allograft model of Lewis (RT1 1) to ACI (RT1a). Heart allograft survival was significantly prolonged following Jak3/Stat5 inhibition when rats were treated with AG490 (20mg/kg) or PNU156804 (80mg/kg) compared to non-treated control animals. This effect was synergistically potentiated when Jak3 inhibitors were used in combination with a signal 1/2 disrupter, cyclosporine, but only additively potentiated with another signal 3 inhibitor, rapamycin. This suggested that sequential inhibition of T cell function is more effective. To specifically address the role of Stat5 in maintaining T cell activity, novel Stat5 antisense oligonucleotides were synthesized and characterized in vitro. Primary human T cells and T-cell tumor lines treated with Stat5 antisense oligonucleotide (7.5 μM) rapidly underwent apoptosis, while no changes in cell cycle were observed as measured by FACS analysis utilizing Annexin-V-Fluorescein and Propidium iodide staining. Evidence is provided to suggest that caspase 8 and 9 pathways mediate this event. Thus, Stat5 may act rather as a negative regulator of apoptotic signals and not as a positive regulator of cell cycle as previously proposed. We conclude that the Jak3/Stat5 pathway is critical for γc cytokine mediated gene expression necessary for T cell expansion and normal immune function and represents an therapeutically relevant effector pathway to combat T cell derived disease. ^
Resumo:
c-Met is the protein tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF) and mediates several normal cellular functions including proliferation, survival, and migration. Overexpression of c-Met correlates with progression and metastasis of human colorectal carcinoma (CRC). The goals of this study were to determine if overexpression of c-Met directly contributes to tumorigenicity and liver metastatic potential of colon cancer, and what are the critical pathways regulated by c-Met in this process. The studies used two colon tumor cell lines, KM12SM and KM20, which express high levels of constitutively active c-Met and are highly metastatic in nude mice. To examine the effects of c-Met overexpression, subclones of theses lines with reduced c-Met expression were obtained following transfection with a c-Met specific targeting ribozyme. Reduction of c-Met in KM12SM cells abolished liver metastases when cells were injected intrasplenically in an experimental metastasis assay. However, c-Met downregulation in theses clones was unstable. Three stable KM20 clones with a 25–35% reduction in c-Met protein levels but 60–90% reduction in basal c-Met autophosphorylation and kinase activity were obtained. While HGF increased c-Met kinase activity in the clones with reduced c-Met, the activity was less than that observed in parental or control transfected cells. Correlating with the reduction in c-Met kinase activity, subclones with reduced c-Met expression had significantly reduced in vitro growth rates, soft-agar colony forming abilities, and increased apoptosis. HGF/SF treatment did not affect anchorage-dependent growth or soft-agar colony forming abilities. Further, c-Met downregulation significantly impaired the ability of HGF/SF to induce migration. To examine the effects of reduced c-Met on tumor formation, parental and c-Met reduced KM20 cells were grown subcutaneously and intrahepatically in nude mice. c-Met downregulation delayed, but did not abolish growth at the subcutaneous site. When these cells were injected intrahepatically, both tumor incidences and size were significantly reduced. To further understand the molecular basis of c-Met in promoting tumor growth, the activation of several signaling intermediates that have been implicated in c-Met mediated growth, survival and migration were compared between KM20 parental cells and subclones with reduced c-Met expression levels. The expression and activity (as determined by phosphorylation) of AKT and Erk1/2 were unaltered. In contrast, Src kinase activity, as measured by immune complex kinase assay, was reduced 2–5 fold following c-Met downregulation. As Src has been implicated in growth, survival and migration, Src activation in c-Met overexpressing lines is likely contributing to the tumorigenic and metastatic capabilities of colon tumor cell lines that overexpress c-Met. Collectively, these results suggest that c-Met overexpression plays a causal role in the development of CRC liver metastases, and that c-Src and c-Met inhibitors may be of potential therapeutic benefit for late-stage colon cancer. ^
Resumo:
Philadelphia chromosome (Ph)-positive chronic myeloid leukemia is caused by a clonal myeloproliferative expansion of malignant primitive hematopoietic progenitor cells. The Ph results from the reciprocal translocation of the ends of chromosome 9 and 22, which generate Bcr-Abl fusion proteins. The Bcr-Abl proteins possess a constitutively activated Abl tyrosine kinase, which is the driving force responsible for causing leukemia. The activated Bcr-Abl tyrosine kinase stimulates multiple signal transduction pathway affecting growth, differentiation and survival of cells. It is known that the Bcr-Abl tyrosine kinase activates several signaling proteins including Stat5, which is a member of the Jak/Stat pathway that is activated by cytokines that control the growth and differentiation of normal hematopoietic cells. Our laboratory was the first one to report that Jak2 tyrosine kinase is activated in a human Bcr-Abl positive hematopoietic cell line. In this thesis, we further investigated the activation of Jak2 by Bcr-Abl. We found that Jak2 is activated not only in cultured Bcr-abl positive cell lines but also in blood cells from CML blast crisis patients. We also demonstrated that SH2 domain of Bcr-Abl is required for efficient activation Jak2. We further showed that Jak2 binds to the C-terminal domain of Bcr-Abl; tyrosine residue 1007, which is critical for Jak2 activation, is phosphorylated by Bcr-Abl. We searched downstream targets of Jak2 in Bcr-Abl positive cells. We treated Bcr-Abl positive cells with a Jak2 kinase inhibitor AG490 and found that c-Myc protein expression is inhibited by AG490. We further demonstrated that Jak2 inhibitor AG490 not only inhibit C-MYC transcription but also protect c-Myc protein from proteasome-dependent degradation. We also showed that AG490 did not affect Bcr-Abl kinase activity and Stat5 activation and its downstream target Bcl-xL expression. AG490 also induced apoptosis of Bcr-Abl positive cells, similar to Bcr-Abl kinase inhibitor STI571 (also termed Gliveec, a very effective drug for CML), but unlike STI571 the apoptosis effects induced by AG490 can not be rescued by IL-3 containing WEHI conditioned medium. We further established several Bcr-Abl positive clones that express a kinase-inactive Jak2 and found that these clones had reduced tumor formation in nude mice assays. Taken together, these results establish that Jak2 is activated in Bcr-Abl positive CML cells and it is required for c-Myc induction and the oncogenic effects of Bcr-Abl. Furthermore, Jak2 and Stat5 are two independent targets of Bcr-Abl. ^