43 resultados para Phosphoinositide-dependent Kinase


Relevância:

30.00% 30.00%

Publicador:

Resumo:

(gamma)-Aminobutyric acid (GABA), a neurotransmitter in the mammalian central nervous system, influences neuronal activity by interacting with at least two pharmacologically and functionally distinct receptors. GABA(,A) receptors are sensitive to blockade by bicuculline, are associated with benzodiazepine and barbiturate binding sites, and mediate chloride flux. The biochemical and pharmacolocal properties of GABA(,B) receptors, which are stereoselectively activated by (beta)-p-chlorophenyl GABA (baclofen), are less well understood. The aim of this study was to define these features of GABA(,B) receptors, with particular emphasis on their possible relationship to the adenylate cyclase system in brain.^ By themselves, GABA agonists have no effect on cAMP accumulation in rat brain slices. However, some GABA agonists markedly enhance the cAMP accumulation that results from exposure to norepinephrine, adenosine, VIP, and cholera toxin. Evidence that this response is mediated by the GABA(,B) system is provided by the finding that it is bicuculline-insensitive, and by the fact that only those agents that interact with GABA(,B) binding sites are active in this regard. GABA(,B) agonists are able to enhance neurotransmitter-stimulated cAMP accumulation in only certain brain regions, and the response is not influenced by phosphodiesterase inhibitors, although is totally dependent on the availability of extracellular calcium. Furthermore, data suggest that inhibition of phospholipase A(,2), a calcium-dependent enzyme, decreases the augmenting response to baclofen, although inhibitors of arachidonic acid metabolism are without effect. These findings indicate that either arachidonic acid or lysophospholipid, products of PLA(,2)-mediated degradation of phospholipids, mediates the augmentation. Moreover, phorbol esters, compounds which directly activate protein kinase C, were also found to enhance neurotransmitter-stimulated cAMP accumulation in rat brain slices. Since this enzyme is known to be stimulated by unsaturated fatty acids such as arachidonate, it is proposed that GABA(,B) agonists enhance cAMP accumulation by fostering the production of arachidonic acid which stimulates protein kinase C, leading to the phosphorylation of some component of the adenylate cyclase system. Thus, GABA, through an interaction with GABA(,B) receptors, modulates neurotransmitter receptor responsiveness in brain. The pharmocological manipulation of this response could lead to the development of therapeutic agents having a more subtle influence than current drugs on central nervous system function. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The copines, named and first described by Creutz et al. (1998), comprise a two C2 domain-containing protein family that can aggregate phosphatidylserine membranes in a calcium-dependent manner. Although no enzymatic function has been attributed to copines, their carboxyl terminus shows homology to the A domain found in integrins that allows binding of magnesium ions. The secondary structure of A domains resembles a Rossmann fold, which can bind dinucleotides and is present in a number of intracellular enzymes. Due to a crossreacting activity of Mik b 1, an antibody to the IL-2R b chain, we were able to serendipitously clone human copine III (CIII). CIII is 65% identical to copine I (CI) and the 5 kb CIII transcript is expressed ubiquitously as determined by a multitissue Northern blot. A polyclonal antibody generated against the carboxyl terminus of CIII recognized CIII in immunoblots and immunoprecipitations. Phosphorylation of CIII was observed on serine and threonine residues, as determined by phosphoamino acid analysis. ^ Experiments were designed to determine whether or not any enzymatic activity, specifically kinase activity, was intrinsic to or associated with CIII. In vitro and in gel kinase assays were performed using transfected HA-tagged CI and CIII, immunoprecipitated endogenous CIII and purified endogenous CIII. The exogenous substrate MBP was phosphorylated in all in vitro kinase assays containing CIII protein purification and column chromatography expertise with me. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Ser/Thr protein kinase C (PKC) isozyme family plays an important role in cell growth and differentiation and also contributes to key events in the development and progression of cancer. PKC isozymes are activated by phospholipid-dependent mechanisms, and they are also subject to oxidative activation and inactivation. Oxidative regulatory mechanisms are important in the governance of PKC isozyme action. While oxidative PKC activation involves phospho-tyrosine (P-Y) stabilization, the molecular mechanism(s) for oxidative PKC inactivation have not been defined. We previously reported that Thr → Cys peptide-substrate analogs inactivate several PKC isozymes including PKC-α via S-thiolation, i.e., by forming disulfides with PKC thiols. This inactivation mechanism is chemically analogous to protein S-glutathiolation, a post-translational modification that has been shown to oxidatively regulate several enzymes. To determine if PKC-α could be inactivated by S-glutathiolation, we employed the thiol-specific oxidant diamide (0.01–10mM) and 100μM glutathione (GSH). Diamide alone (0.1–5.0 mM) weakly inactivated PKC-α (<20%), and GSH alone had no effect on the isozyme activity. Marked potentiation of diamide-induced PKC-α inactivation (>90%) was achieved by 100μM GSH, resulting in full inactivation of the isozyme. Inactivation was reversed by DTT, consistent with a mechanism involving PKC-α S-glutathiolation. S-glutathiolation was demonstrated as DTT-reversible incorporation of [35S] GSH into PKC-α isozyme structure. These results indicate that a mild oxidative stimulus can inactivate purified PKC-α via S-glutathiolation. In addition, diamide treatment of metabolically labeled NIH3T3 cells induced potent PKC-α inactivation via isozyme [35S] S-thiolation. These results indicate that cellular PKC-α can be regulated via S-glutathiolation. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The p21-activated kinase 5 (PAK5) is a serine/threonine protein kinase associated with the group 2 subfamily of PAKs. Although our understanding about PAK5 is very limited, it is receiving increasing interest due to its tissue specific expression pattern and important signaling properties. PAK5 is highly expressed in brain. Its overexpression induces neurite outgrowth in neuroblastoma cells and promotes survival in fibroblasts. ^ The serine/threonine protein kinase Raf-1 is an essential mediator of Ras-dependent signaling that controls the ERK/MAPK pathway. In contrast to PAK5, Raf-1 has been the subject of intensive investigation. However due to the complexity of its activation mechanism, the biological inputs controlling Raf-1 activation are not fully understood. ^ PAKs 1-3 are the known kinases responsible for phosphorylation of Raf-1 on serine 338, which is a crucial phosphorylation site for Raf-1 activation. However, dominant negative versions of these kinases do not block EGF-induced Raf-1 activation, indicating that other kinases may regulate the phosphorylation of Raf-1 on serine 338. ^ This thesis work was initiated to test whether the group 2 PAKs 4, 5 and 6 are responsible for EGF-induced Raf-1 activation. We found that PAK5, and to a lesser extent PAK4, can activate Raf-1 in cells. Our studies thereafter focused on PAK5. With the progress of our study we found that PAK5 does not significantly stimulate serine 338 phosphorylation of Triton X-100 soluble Raf-1. PAK5, however, constitutively and specifically associates with Raf-1 and targets it to a Triton X-100 insoluble, mitochondrial compartment, where PAK5 phosphorylates serine 338 of Raf-1. We further demonstrated that endogenous PAK5 and Raf-1 colocalize in Hela cells at the mitochondrial outer membrane. In addition, we found that the mitochondria-targeting of PAK5 is determined by its C-terminal kinase domain plus the upstream proximal region, and facilitated by the N-terminal p21 binding domain. We also demonstrated that Rho GTPases Cdc42 and RhoD associate with and regulate the subcellular localization of PAK5. Taken together, this work suggests that the mitochondria-targeting of PAK5 may link Ras and Rho GTPase-mediated signaling pathways, and sheds light on aspects of PAK5 signaling that may be important for regulating neuronal homeostasis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proper execution of mitosis requires the accurate segregation of replicated DNA into each daughter cell. The highly conserved mitotic kinase AIR-2/Aurora B is a dynamic protein that interacts with subsets of cofactors and substrates to coordinate chromosome segregation and cytokinesis in Caenorhabdiris elegans. To identify components of the AIR-2 regulatory pathway, a genome-wide RNAi-based screen for suppressors of air-2 temperature-sensitive mutant lethality was conducted. Here, I present evidence that two classes of suppressors identified in this screen are bona fide regulators of the AIR-2 kinase. The strongest suppressor cdc-48.3, encodes an Afg2/Spaf-related Cdc48-like AAA+ ATPase that regulates AIR-2 kinase activity and stability during C. elegans embryogenesis. Loss of CDC-48.3 suppresses the lethality of air-2 mutant embryos, marked by the restoration of the dynamic behavior of AIR-2 and rescue of chromosome segregation and cytokinesis defects. Loss of CDC-48.3 leads to mitotic delays and abnormal accumulation of AIR-2 during late telophase/mitotic exit. In addition, AIR-2 kinase activity is significantly upregulated from metaphase through mitotic exit in CDC-48.3 depleted embryos. Inhibition of the AIR-2 kinase is dependent on (1) a direct physical interaction between CDC-48.3 and AIR-2, and (2) CDC-48.3 ATPase activity. Importantly, the increase in AIR-2 kinase activity does not correlate with the stabilization of AIR-2 in late mitosis. Hence, CDC-48.3 is a bi-functional inhibitor of AIR-2 that is likely to act via distinct mechanisms. The second class of suppressors consists of psy-2/smk-1 and pph-4.1, which encode two components of the conserved PP4 phosphatase complex that is essential for spindle assembly, chromosome segregation, and overall mitotic progression. AIR-2 and its substrates are likely to be targets of this complex since mitotic AIR-2 kinase activity is significantly increased during mitosis when either PSY-2/SMK-1 or PPH-4.l is depleted. Altogether, this study demonstrates that during the C. elegans embryonic cell cycle, regulators including the CDC-48.3 ATPase and PP4 phosphatase complex interact with and control the kinase activity, targeting behavior and protein stability of the Aurora B kinase to ensure accurate and timely progression of mitosis. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Advances in therapy for colorectal cancer have been hampered by development of resistance to chemotherapy. The Src family of protein tyrosine kinases has been associated with colorectal cancer development and progression. Activation of the prototypic member of the family, Src, occurs in advanced colorectal cancer and is associated with a worse outcome. This work tests the hypotheses that Src activation contributes to chemoresistance in some colon tumors and that this resistance can be overcome by use of Src inhibitors. The aims of the proposal were to (1) determine if constitutive Src activation is sufficient to induce oxaliplatin resistance; (2) evaluate the role of reactive oxygen species (ROS) in the activation of Src after oxaliplatin treatment; (3) determine the frequency of Src activation in liver metastases after oxaliplatin treatment; and (4) evaluate the safety, preliminary efficacy, and pharmacodynamics of the combination of dasatinib with oxaliplatin-based therapy in patients with metastatic colorectal cancer. ^ Using a panel of colon cancer cell lines and murine models, I demonstrate that administration of oxaliplatin, a commonly utilized chemotherapy for colorectal cancer, results in an increased activation of Src. The activation occurs acutely in some, but not all, colorectal carcinoma cell lines. Cell lines selected for oxaliplatin resistance are further increased in Src activity. Treatment of cell lines with dasatinib, a non-selective pharmacologic inhibitor of the Src family kinases synergistically killed some, but not all cell lines. Cell lines with the highest acute activation of Src after oxaliplatin administration were the most sensitive to the combination therapy. Previous work demonstrated that siRNA to Src increased sensitivity to oxaliplatin, suggesting that the effects of dasatinib are primarily due to its ability to inhibit Src in these cell lines. ^ To examine the mechanism underlying these results, I examined the effects of reactive oxygen species (ROS), as previous studies have demonstrated that platinum chemotherapeutics result in intracellular oxidative stress. I demonstrated that oxaliplatin-induced reactive oxygen species were higher in the cell lines with Src activation, relative to those in which Src was not activated. This oxaliplatin-induced Src activation was blocked by the administration of anti-oxidants, thereby demonstrating that synergistic killing between dasatinib and oxaliplatin was associated with the ability of the latter to generate ROS. ^ In a murine model of colorectal cancer metastasis to the liver, the combination of dasatinib and oxaliplatin was more effective in reducing tumor volume than either agent alone. However, when oxaliplatin resistant cell lines were treated with a combination of oxaliplatin and AZD0530, an inhibitor in the clinic with increased specificity for Src, no additional benefit was seen, although Src was activated by oxaliplatin and Src substrates were inhibited. The indolent growth of oxaliplatin-resistant cells, unlike the growth of oxaliplatin resistant tumors in patients, precludes definitive interpretation of these results. ^ To further explore Src activation in patients with oxaliplatin exposure and resistance, an immunohistochemistry analysis of tumor tissue from resected liver metastases of colorectal cancer was performed. Utilizing a tissue microarray, staining for phosphorylated Src and FAK demonstrated strong staining of tumor relative to stromal and normal liver. In patients recently exposed to oxaliplatin, there was increased FAK activation, supporting the clinical relevance of the prior preclinical studies. ^ To pursue the potential clinical benefit of the combination of Src inhibition with oxaliplatin, a phase IB clinical trial was completed. Thirty patients with refractory metastatic colorectal cancer were treated with a combination of 5-FU, oxaliplatin, an epidermal-growth factor receptor monoclonal antibody, and dasatinib. The recommended phase II dose of dasatinib was established, and toxicities were quantified. Pharmacodynamic studies demonstrated increased phosphorylation of the Src substrate paxillin after dasatinib therapy. Tumor biopsies were obtained and Src expression levels were quantitated. Clinical benefit was seen with the combination, including a response rate of 20% and disease control rate of 56%, prompting a larger clinical study. ^ In summary, although Src is constitutively activated in metastatic colorectal cancer, administration of oxaliplatin chemotherapy can further increase its activity, through a reactive oxygen species dependent manner. Inhibition of Src in combination with oxaliplatin provides additional benefit in vitro, in preclinical animal models, and in the clinic. Further study of Src inhibition in the clinic and identification of predictive biomarkers of response will be required to further advance this promising therapeutic target. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Growth factor signaling promotes anabolic processes via activation of the PI3K-Akt kinase cascade. Deregulation of the growth factor-dependent PI3K-Akt pathway was implicated in tumorigenesis. Akt is an essential serine/threonine protein kinase that controls multiple physiological functions such as cell growth, proliferation, and survival to maintain cellular homeostasis. Recently, the mammalian Target of Rapamycin Complex 2 (mTORC2) was identified as the main Akt Ser-473 kinase, and Ser-473 phosphorylation is required for Akt hyperactivation. However, the detailed mechanism of mTORC2 regulation in response to growth factor stimulation or cellular stresses is not well understood. In the first project, we studied the regulation of the mTORC2-Akt signaling under ER stress. We identified the inactivation of mTORC2 by glycogen synthase kinase-3β (GSK-3β). Under ER stress, the essential mTORC2 component, rictor, is phosphorylated by GSK-3β at Ser-1235. This phosphorylation event results in the inhibition of mTORC2 kinase activity by interrupting Akt binding to mTORC2. Blocking rictor Ser-1235 phosphorylation can attenuate the negative impacts of GSK-3β on mTORC2/Akt signaling and tumor growth. Thus, our work demonstrated that GSK-3β-mediated rictor Ser-1235 phosphorylation in response to ER stress interferes with Akt signaling by inhibiting mTORC2 kinase activity. In the second project, I investigated the regulation of the mTORC2 integrity. We found that basal mTOR kinase activity depends on ATP level, which is tightly regulated by cell metabolism. The ATP-sensitive mTOR kinase is required for SIN1 protein phosphorylation and stabilization. SIN1 is an indispensable subunit of mTORC2 and is required for the complex assembly and mTORC2 kinase activity. Our findings reveal that mTOR-mediated phosphorylation of SIN1 is critical for maintaining complex integrity by preventing SIN1 from lysosomal degradation. In sum, our findings verify two distinct mTORC2 regulatory mechanisms via its components rictor and SIN1. First, GSK-3β-mediated rictor Ser-1235 phosphorylation results in mTORC2 inactivation by interfering its substrate binding ability. Second, mTOR-mediated Ser-260 phosphorylation of SIN1 preserves its complex integrity. Thus, these two projects provide novel insights into the regulation of mTORC2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Signal transduction pathways operative in lymphokine activated killer (LAK) cells during execution of cytolytic function have never been characterized. Based on ubiquitous involvement of protein phosphorylation in activation of cytolytic mechanisms used by CTL and NK cells, it was hypothesized that changes in protein phosphorylation should occur when LAK encounter tumor targets. It was further hypothesized that protein kinases would regulate LAK-mediated cytotoxicity. Exposure to either SK-Mel-1 (melanoma) or Raji (lymphoma) targets consistently led to increased phosphorylation of two 65-kD LAK proteins pp65a and -b, with isoelectric points (pI) of 5.1 and 5.2 respectively. Increased p65 phosphorylation was initiated between 1 and 5 min after tumor coincubation, occurred on Ser residues, required physical contact between LAK and tumors, correlated with target recognition, and also occurred after crosslinking Fc$\gamma$RIIIA in the absence of tumors. Both pp65a and -b were tentatively identified as phosphorylated forms of the actin-bundling protein L-plastin, based on pI, molecular weight, and cross-reactivity with specific antiserum. The known biochemical properties of L-plastin suggest it may be involved in regulating adhesion of LAK to tumor targets. The protein tyrosine kinase-specific inhibitor Herb A did not block p65 phosphorylation, but blocked LAK killing of multiple tumor targets at a post-binding stage. Greater than 50% inhibition of cytotoxicity was observed after a 2.5-h pretreatment with 0.125 $\mu$g/ml Herb A. Inhibition occurred over a period in pretreatment which LAK were not dependent upon IL-2 for maintenance of killing activity, supporting the conclusion that the drug interfered with mobilization of cytotoxic function. Granule exocytosis measured by BLT-esterase release from LAK occurred after coincubation with tumors, and was inhibited by Herb A LAK cytotoxicity was dependent upon extracellular calcium, suggesting that granule exocytosis rather than Fas ligand was the principal pathway leading to target cell death. The data indicate that protein tyrosine kinases play a pivotal role in LAK cytolytic function by regulating granule exocytosis, and that tumor targets can activate an adhesion dependent Ser kinase pathway in LAK resulting in phosphorylation of L-plastin. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, I investigated the effect of cylic AMP-dependent protein kinase (PKA) on v-Mos kinase activity. Increase in PKA activity in vivo brought about either by forskolin treatment or by overexpression of the PKA catalytic subunit resulted in a significant inhibition of v-Mos kinase activity. The purified PKA catalytic subunit was able to phosphorylate recombinant p37$\rm\sp{v-mos}$ in vitro, suggesting that the mechanism of in vivo inhibition of v-Mos kinase involves direct phosphorylation by PKA. Ser-263 was identified as a residue that is normally phosphorylated at a very low level but whose phosphorylation is dramatically increased upon forskolin treatment. Consistent with the inhibitory role of Ser-263 phosphorylation, the Ala-263 mutant of v-Mos was not inhibited by forskolin treatment. Based on our results, we propose that the known inhibitory role of PKA in the initiation of oocyte maturation could be explained at least in part by its inhibition of Mos kinase.^ Combining tryptic phosphopeptide two-dimensional mapping analysis and in vitro mutagenesis studies, I identified Ser-56 as the major in vivo phosphorylation site on v-Mos. I studied the interrelationship between Ser-34 and Ser-56 phosphorylation in regulating v-Mos function. After site-directed mutagenesis to substitute serine residues with alanine or glutamic acid in different combinations to mimick unphosphorylated and phosphorylated serines respectively, various v-Mos mutants were expressed in COS-1 cells. As expected, Ala-34 mutant of v-Mos had very low (less 5% of wild type) kinase activity. The Ala-56 mutant had kinase activity 50% that of wild type. Surprisingly, the Ala-34 Ala-56 double mutant and the Ala-56 mutant exhibited identical kinase activity. On the other hand, Ala-34 Glu-56 double mutant had reduced kinase activity comparable to Ala-34 mutant. These results suggest that the phosphorylation at Ser-56 may serve to inhibit the activation of newly synthesized Mos protein. As predicted from Xenopus c-Mos studies, Glu-34 mutant of v-Mos was highly active (125% that of wild type). Interestingly, consistant with the model involving an inhibitory role of Ser-56 phosphorylation, the Glu-34 Glu-56 double mutant was totally inactive as a kinase. Moreover in my experiments, there was a perfect correlation between the level of v-Mos kinase activity of various mutants and their transforming activity. The latter is dependent upon MEK1 phosphorylation/ activation in v-mos transformed cells. Residues corresponding to both v-Mos Ser-34 and Ser-56 are evolutionarily conserved in c-Mos. Therefore, the cytostatic factor function of c-Mos may be regulated in the same manner as v-Mos kinase activity.^ It has been known that v-mos transforms cells by affecting G1 phase progression of the cell cycle. Here I showed that mos induces cyclin D1 expression in mos transformed NIH 3T3 cells and NRK 6m2 cells, and this induced level was found to be unaffected by serum starvation. Consequently, cyclin D1-Cdk4 and cyclin E-Cdk2 activities increase, and retinoblastoma protein is hyperphosphorylated. Based on studies from several laboratories, these findings suggest that increased amount of cyclin D1-Cdk4 complexes ties up the limited amount of cyclin E-Cdk2 inhibitors (e.g. p27), causing the activation of cyclin E-Cdk2. My results indicate that activation of key cell cycle regulators of G1 phase may be important for cellular transformation by mos. (Abstract shortened by UMI.) ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcium/calmodulin-dependent protein kinase II (CaM kinase) is a multifunctional Ser/Thr protein kinase, that is highly enriched in brain and is involved in regulating many aspects of neuronal function. We observed that forebrain CaM kinase from crude homogenates, cytosolic fractions and purified preparations inactivates and translocates into the particulate fraction following autophosphorylation. Using purified forebrain CaM kinase as well as recombinant $\alpha$ isozyme, we determined that the formation of particulate enzyme was due to enzyme self-association. The conditions of autophosphorylation determine whether enzyme self-association and/or inactivation will occur. Self-association of CaM kinase is sensitive to pH, ATP concentration, and enzyme autophosphorylation. This process is prevented by saturating concentrations of ATP. However, in limiting ATP, pH is the dominant factor, and enzyme self-association occurs at pH values $\rm{<}7.0.$ Site-specific mutants were produced by substituting Ala for Thr286, Thr253, or Thr305,306 to determine whether these sites of autophosphorylation affect enzyme inactivation and self-association. The only mutation that influenced these processes was Ala286, which removed the protective effect afforded by autophosphorylation in saturating ATP. Enzyme inactivation occurs in the presence and absence of self-association and appears predominantly sensitive to nucleotide concentration, because saturating concentrations of $\rm Mg\sp{2+}/ADP$ or $\rm Mg\sp{2+}/ATP$ prevent this process. These data implicate the ATP binding pocket in both inactivation and self-association. We also observed that select peptide substrates and peptide inhibitors modeled after the autoregulatory domain of CaM kinase prevented these processes. The $\alpha$ and $\beta$ isozymes of CaM kinase were characterized independently, and were observed to exhibit differences in both enzyme inactivation and self-association. The $\beta$ isozyme was less sensitive to inactivation, and was never observed to self-associate. Biophysical characterization, and transmission electron microscopy coupled with image analysis indicated both isozymes were multimeric, however, the $\alpha$ and $\beta$ isozymes appeared structurally different. We hypothesize that the $\alpha$ subunit of CaM kinase plays both a structural and enzymatic role, and the $\beta$ subunit plays an enzymatic role. The ramifications for the functional differences observed for inactivation and self-association are discussed based on potential structural differences and autoregulation of the $\alpha$ and $\beta$ isozymes in both calcium-induced physiological and pathological processes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Philadelphia chromosome (Ph)-positive chronic myeloid leukemia is caused by a clonal myeloproliferative expansion of malignant primitive hematopoietic progenitor cells. The Ph results from the reciprocal translocation of the ends of chromosome 9 and 22, which generate Bcr-Abl fusion proteins. The Bcr-Abl proteins possess a constitutively activated Abl tyrosine kinase, which is the driving force responsible for causing leukemia. The activated Bcr-Abl tyrosine kinase stimulates multiple signal transduction pathway affecting growth, differentiation and survival of cells. It is known that the Bcr-Abl tyrosine kinase activates several signaling proteins including Stat5, which is a member of the Jak/Stat pathway that is activated by cytokines that control the growth and differentiation of normal hematopoietic cells. Our laboratory was the first one to report that Jak2 tyrosine kinase is activated in a human Bcr-Abl positive hematopoietic cell line. In this thesis, we further investigated the activation of Jak2 by Bcr-Abl. We found that Jak2 is activated not only in cultured Bcr-abl positive cell lines but also in blood cells from CML blast crisis patients. We also demonstrated that SH2 domain of Bcr-Abl is required for efficient activation Jak2. We further showed that Jak2 binds to the C-terminal domain of Bcr-Abl; tyrosine residue 1007, which is critical for Jak2 activation, is phosphorylated by Bcr-Abl. We searched downstream targets of Jak2 in Bcr-Abl positive cells. We treated Bcr-Abl positive cells with a Jak2 kinase inhibitor AG490 and found that c-Myc protein expression is inhibited by AG490. We further demonstrated that Jak2 inhibitor AG490 not only inhibit C-MYC transcription but also protect c-Myc protein from proteasome-dependent degradation. We also showed that AG490 did not affect Bcr-Abl kinase activity and Stat5 activation and its downstream target Bcl-xL expression. AG490 also induced apoptosis of Bcr-Abl positive cells, similar to Bcr-Abl kinase inhibitor STI571 (also termed Gliveec, a very effective drug for CML), but unlike STI571 the apoptosis effects induced by AG490 can not be rescued by IL-3 containing WEHI conditioned medium. We further established several Bcr-Abl positive clones that express a kinase-inactive Jak2 and found that these clones had reduced tumor formation in nude mice assays. Taken together, these results establish that Jak2 is activated in Bcr-Abl positive CML cells and it is required for c-Myc induction and the oncogenic effects of Bcr-Abl. Furthermore, Jak2 and Stat5 are two independent targets of Bcr-Abl. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The essential p21-activated kinase (PAK), Shk1, is a critical component of a Ras/Cdc42/PAK complex required for cell viability, normal cell polarity, proper regulation of cytoskeletal dynamics, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. While cellular functions of PAKs have been described in eukaryotes from yeasts to mammals, the molecular mechanisms of PAK regulation and function are poorly understood. This study has characterized a novel Shk1 inhibitor, Skb15, and, in addition, identified the cell polarity regulator, Tea1, as a potential biological substrate of Shk1 in S. pombe. Skb15 is a highly conserved WD repeat protein that was discovered from a two-hybrid screen for proteins that interact with the catalytic domain of Shk1. Molecular data indicate that Skb15 negatively regulates Shk1 kinase activity in S. pombe cells. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution. ^ Our laboratory has recently demonstrated that Shk1, in addition to regulating actin cytoskeletal organization, is required for proper regulation of microtubule dynamics in S. pombe cells. The Shk1 protein localizes to interphase and mitotic microtubules, the septum-forming region, and cell ends. This pattern of localization overlaps with that of the cell polarity regulator, Tea1, in S. pombe cells. The tea1 gene was identified by Paul Nurse's laboratory from a screen for genes involved in the control of cell morphogenesis in S. pombe. In contrast to wild type S. pombe cells, which are rod shaped, tea1 null cells are often bent and/or branched in shape. The Tea1 protein localizes to the cell ends, like Shk1, and the growing tips of interphase microtubules. Thus, experiments were performed to investigate whether Tea1 interacts with Shk1. The tea1 null mutation strongly suppresses the loss of function of Skb15, an essential inhibitor of Shk1 function. All defects associated with the skb15 mutation, including defects in F-actin organization, septation, spindle elongation, and chromosome segregation, are suppressed by tea1Δ, suggesting that Tea1 may function in these diverse processes. Consistent with a role for Tea1 in cytokinesis, tea1Δ cells have a modest cell separation defect that is greatly exacerbated by a shk1 mutation and, like Shk1, Tea1 localizes to the septation site. Molecular analyses showed that Tea1 phosphorylation is significantly dependent on Shk1 function in vivo and that bacterially expressed Tea1 protein is directly phosphorylated by recombinant Shk1 kinase in vitro. Taken together, these results identify Tea1 as a potential biological substrate of Shk1 in S. pombe. ^ In summary, this study provides new insights into a conserved regulatory mechanism for PAKs, and also begins to uncover the molecular mechanisms by which the Ras/Cdc42/PAK complex regulates the microtubule and actin cytoskeletons and cell growth polarization in fission yeast. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sox9 is a master transcription factor in chondrocyte differentiation. Several lines of evidence suggest that the p38 mitogen-activated protein kinase (MAPK) pathway is involved in chondrocyte differentiation. In the present study, we examined the roles of p38 in the regulation of SOX9 activity and chondrogenesis. ^ COS7 cells were transfected with a SOX9 expression vector and 4x48-p89, a luciferase construction harboring four tandem copies of a SOX9-dependent 48-bp enhancer in Col2a1. Coexpression of MKK6EE, a constitutively active mutant of MKK6, a MAPKK that specifically activates p38, further increased the activity of the SOX9-dependent 48-bp enhancer about 5-fold, and SOX9 protein levels were not increased under these conditions. This increase in enhancer activity was not observed in a mutant enhancer construct harboring mutations that abolish SOX9 binding. These data strongly suggested that activation of the p38 pathway results in increased activity of SOX9. In addition, the increase of the activity of the SOX9-dependent 48-bp enhancer by MKK6EE was also observed in primary chondrocytes, and this increase was abolished by coexpression of a p38 phosphatase, MKP5, and p38 specific inhibitors. Furthermore, treatment of primary chondrocytes with p38 inhibitors decreased the expression of Col2a1, a downstream target of Sox9, without affecting Sox9 RNA levels, further supporting the hypothesis that p38 plays a role in regulating Sox9 activity in chondrocytes. ^ To further study the role of the p38 MAPK pathway in chondrogenesis, we generated transgenic mice that express MKK6EE in chondrocytes under the control of the Col2a1 promoter/intron regulatory sequences. These mice showed a dwarf phenotype characterized by reduced chondrocyte proliferation and a delay in the formation of primary and secondary ossification centers. Histological analysis using in situ hybridization showed reduced expression of Indian hedgehog, PTH/PTHrP receptor, cyclin D1 and increased expression of p21. In addition, consistent with the notion that Sox9 activity was increased in these mice, transgenic mice that express MKK6EE in chondrocytes showed phenotypes similar to those of mice that overexpress SOX9 in chondrocytes. Therefore, our study provides in vivo evidence for the role of p38 in chondrocyte differentiation and suggests that Sox9 is a downstream target of the p38 MAPK pathway. ^