41 resultados para Leukemia -- Statistics
Resumo:
Neuropsychological impairment occurs in 20%-40% of childhood acute lymphoblastic leukemia (ALL) survivors, possibly mediated by folate depletion following methotrexate chemotherapy. We evaluated the relationship between two folate pathway polymorphisms and neuropsychological impairment after childhood ALL chemotherapy. Eighty-six childhood ALL survivors were recruited between 2004-2007 at Texas Children's Hospital after exclusion for central nervous system leukemia, cranial irradiation, and age<1 year at diagnosis. Neuropsychological evaluation at a median of 5.3 years off therapy included a parental questionnaire and the following child performance measures: Trail Making Tests A and B, Grooved Pegboard Test Dominant-Hand and Nondominant-Hand, and Digit Span subtest. We performed genotyping for polymorphisms in two folate pathway genes: reduced folate carrier (RFC1 80G>A, rs1051266) and dihydrofolate reductase (DHFR Intron-1 19bp deletion). Fisher exact test, logistic regression, Student's t-test, and ANOVA were used to compare neuropsychological test scores by genotype, using a dominant model to group genotypes. In univariate analysis, survivors with cumulative methotrexate exposure ≥9000 mg/m2 had an increased risk of attention disorder (OR=6.2, 95% CI 1.2 – 31.3), compared to survivors with methotrexate exposure <9000 mg/m2. On average, female survivors scored 8.5 points higher than males on the Digit Span subtest, a test of working memory (p=0.02). The RFC1 80G>A and DHFR Intron-1 deletion polymorphisms were not related to attention disorder or impairment on tests of attention, processing speed, fine motor speed, or memory. These data imply a strong relationship between methotrexate dose intensity and impairment in attention after childhood ALL therapy. We did not find an association between the RFC1 80G>A or DHFR Intron-1 deletion polymorphisms and long-term neuropsychological impairment in childhood ALL survivors.^
Resumo:
Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^
Resumo:
Objectives. This paper seeks to assess the effect on statistical power of regression model misspecification in a variety of situations. ^ Methods and results. The effect of misspecification in regression can be approximated by evaluating the correlation between the correct specification and the misspecification of the outcome variable (Harris 2010).In this paper, three misspecified models (linear, categorical and fractional polynomial) were considered. In the first section, the mathematical method of calculating the correlation between correct and misspecified models with simple mathematical forms was derived and demonstrated. In the second section, data from the National Health and Nutrition Examination Survey (NHANES 2007-2008) were used to examine such correlations. Our study shows that comparing to linear or categorical models, the fractional polynomial models, with the higher correlations, provided a better approximation of the true relationship, which was illustrated by LOESS regression. In the third section, we present the results of simulation studies that demonstrate overall misspecification in regression can produce marked decreases in power with small sample sizes. However, the categorical model had greatest power, ranging from 0.877 to 0.936 depending on sample size and outcome variable used. The power of fractional polynomial model was close to that of linear model, which ranged from 0.69 to 0.83, and appeared to be affected by the increased degrees of freedom of this model.^ Conclusion. Correlations between alternative model specifications can be used to provide a good approximation of the effect on statistical power of misspecification when the sample size is large. When model specifications have known simple mathematical forms, such correlations can be calculated mathematically. Actual public health data from NHANES 2007-2008 were used as examples to demonstrate the situations with unknown or complex correct model specification. Simulation of power for misspecified models confirmed the results based on correlation methods but also illustrated the effect of model degrees of freedom on power.^
Resumo:
Chronic myeloid leukemia (CML), a myeloproliferative disorder, represents approximately 15-20% of all adult leukemia. The development of CML is clearly linked to the constitutively active protein-tyrosine kinase BCR-ABL, which is encoded by BCR-ABL fusion gene as the result of chromosome 9/22 translocation (Philadelphia chromosome). Previous studies have demonstrated that oxidative stress-associated genetic, metabolic and biological alterations contribute to CML cell survival and drug refractory. Mitochondria and NAD(P)H oxidase (NOX) are the major sources of BCR-ABL-induced cellular reactive oxygen species (ROS) production. However, it is still unknown how CML cells maintain the altered redox status, while escaping from the persistent oxidative stress-induced cell death. Therefore, elucidation of the mechanisms by which CML cells cope with oxidative stress will provide new insights into CML leukemogenesis. The major goal of this study is to identify the survival factors protecting CML cells against oxidative stress and develop novel therapeutic strategies to overcome drug resistance. Several experimental models were used to test CML cell redox status and cellular sensitivity to oxidative stress, including BCR-ABL inducible cell lines, BCR-ABL stably transformed cell lines and BCR-ABL-expressing CML blast crisis cells with differential BCL-XL/BCL-2 expressions. Additionally, an artificial CML cell model with heterogenic BCL-XL/BCL-2 expression was established to assess the correlation between differential survival factor expression patterns and cell sensitivity to Imatinib and oxidative stress. In this study, BCL-XL and GSH have been identified as the major survival factors responsive to BCR-ABL-promoted cellular oxidative stress and play a dominant role in regulating the threshold of oxidative stress-induced apoptosis. Cell survival factors BCL-XL and BCL-2 differentially protect mitochondria under oxidative stress. BCL-XL is an essential survival factor in preventing excessive ROS-induced cell death while BCL-2 seems to play a relatively minor role. Furthermore, the redox modulating reagent β-phenethyl isothiocyanate (PEITC) has been found to efficiently deplete GSH and induce potent cell killing effects in drug-resistant CML cells. Combination of PEITC with BCL-XL/BCL2 inhibitor ABT737 or suppression of BCL-XL by BCR-ABL inhibitor Gleevec dramatically sensitizes CML cells to apoptosis. These results have suggested that elevation of BCL-XL and cellular GSH are important for the development of CML, and that redox-directed therapy is worthy of further clinical investigations in CML.
Resumo:
An investigation of (a) month/season-of-birth as a risk factor and (b) month/season-of-treatment initation as a prognostic factor in acute lymphoblastic leukemia (ALL) in children, 0-15 years of age, was conducted. The study population used was that of the Surveillance, Epidemiology, and End Results (SEER) program of the National Cancer Institute and included children diagnosed and treated for ALL from 1973-1986. Two separate sets of analyses using different exclusion criteria led to similar results. Specifically, the inability to reject the null hypothesis of no significant difference in the variation of monthly/seasonal incidence rates among children residing within the 10 SEER sites using either cosinor analysis or one-way analysis of variance. No association was established between month/season of treatment initiation and survival in ALL among children using either Kaplan-Meier or cosinor analysis. In separate Kaplan-Meier analyses, age, gender, and treatment type were each found to be significant univariate prognostic factors for survival, however. ^
Resumo:
The existence of an association between leukemia and electromagnetic fields (EMF) is still controversial. The results of epidemiologic studies of leukemia in occupational groups with exposure to EMF are inconsistent. Weak associations have been seen in a few studies. EMF assessment is lacking in precision. Reported dose-response relationships have been based on qualitative levels of exposure to EMF without regard to duration of employment or EMF intensity on the jobs. Furthermore, potential confounding factors in the associations were not often well controlled. The current study is an analysis of the data collected from an incident case-control study. The primary objective was to test the hypothesis that occupational exposure to EMF is associated with leukemia, including total leukemia (TL), myelogenous leukemia (MYELOG) and acute non-lymphoid leukemia (ANLL). Potential confounding factors: occupational exposure to benzene, age, smoking, alcohol consumption, and previous medical radiation exposures were controlled in multivariate logistic regression models. Dose-response relationships were estimated by cumulative occupational exposure to EMF, taking into account duration of employment and EMF intensity on the jobs. In order to overcome weaknesses of most previous studies, special efforts were made to improve the precision of EMF assessment. Two definitions of EMF were used and result discrepancies using the two definitions were observed. These difference raised a question as to whether the workers at jobs with low EMF exposure should be considered as non-exposed in future studies. In addition, the current study suggested use of lifetime cumulative EMF exposure estimates to determine dose-response relationship. The analyses of the current study suggest an association between ANLL and employment at selected jobs with high EMF exposure. The existence of an association between three types of leukemia and broader categories of occupational EMF exposure, is still undetermined. If an association does exist between occupational EMF exposure and leukemia, the results of the current study suggest that EMF might only be a potential factor in the promotion of leukemia, but not its initiation. ^
Resumo:
Additive and multiplicative models of relative risk were used to measure the effect of cancer misclassification and DS86 random errors on lifetime risk projections in the Life Span Study (LSS) of Hiroshima and Nagasaki atomic bomb survivors. The true number of cancer deaths in each stratum of the cancer mortality cross-classification was estimated using sufficient statistics from the EM algorithm. Average survivor doses in the strata were corrected for DS86 random error ($\sigma$ = 0.45) by use of reduction factors. Poisson regression was used to model the corrected and uncorrected mortality rates with covariates for age at-time-of-bombing, age at-time-of-death and gender. Excess risks were in good agreement with risks in RERF Report 11 (Part 2) and the BEIR-V report. Bias due to DS86 random error typically ranged from $-$15% to $-$30% for both sexes, and all sites and models. The total bias, including diagnostic misclassification, of excess risk of nonleukemia for exposure to 1 Sv from age 18 to 65 under the non-constant relative projection model was $-$37.1% for males and $-$23.3% for females. Total excess risks of leukemia under the relative projection model were biased $-$27.1% for males and $-$43.4% for females. Thus, nonleukemia risks for 1 Sv from ages 18 to 85 (DRREF = 2) increased from 1.91%/Sv to 2.68%/Sv among males and from 3.23%/Sv to 4.02%/Sv among females. Leukemia excess risks increased from 0.87%/Sv to 1.10%/Sv among males and from 0.73%/Sv to 1.04%/Sv among females. Bias was dependent on the gender, site, correction method, exposure profile and projection model considered. Future studies that use LSS data for U.S. nuclear workers may be downwardly biased if lifetime risk projections are not adjusted for random and systematic errors. (Supported by U.S. NRC Grant NRC-04-091-02.) ^
Resumo:
Tumor-specific chromosomal abnormalities have been demonstrated in bone marrow of approximately 50% of newly diagnosed acute nonlymphocytic (ANLL) patients. This study examined two hypotheses: (1) Aneuploid (AA) patients are diagnosed later in the course of their disease than diploid (NN) patients; and (2) AA patients are more likely to have been exposed to environmental agents. Of 324 patients eligible for study, environmental exposure data were obtained for 236 (73%) of them. No evidence was found to suggest that AA patients had more advanced disease than NN patients. Aneuploid patients were more likely than NN patients to: (a) report treatment with cytotoxic drugs for a prior medical condition (odds ratio, adjusted for age, sex and other exposures (OR) = 4.25, 95% confidence intervals, 1.38 to 13.17); (b) smoke cigarettes, OR = 1.82 (1.02, 3.26) and (c) drink alcoholic beverages, OR = 1.91 (1.05, 3.48). No statistically significant associations between aneuploidy and occupational exposures were present, OR = 3.59 (0.76, 17.13). Problems in interpreting these ORs are discussed. ^
Resumo:
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the United Statesand Europe. CLL patients with deletion of chromosome 17p, where the tumor suppressor p53 gene is located, often develop a more aggressive disease with poor clinical outcomes. However, the underlying mechanism remains unclear. In order to understand the underneath mechanism in vivo, I have recently generated mice with Eu-TCL1-Tg:p53-/- genotype and showed that these mice develop aggressive leukemia that resembles human CLL with 17p deletion. The Eu-TCL1-Tg:p53-/- mice developed CLL disease at 3-4 months, significantly earlier than the parental Eu-TCL1-Tg mice that developed CLL disease at 8-12 months. Flow cytometry analysis showed that the CD5+/ IgM+ cell population appeared in the peritoneal cavity, bone marrow, and the spleens of Eu-TCL1-Tg:p53-/- mice significantly earlier than that of the parental Eu-TCL1-Tg mice. Massive infiltration and accumulation of leukemia cells were found in the spleen and peritoneal cavity. In vitro study showed that the leukemia cells isolated from the Eu-TCL1-Tg:p53-/- mice were more resistant to fludarabine treatment than the leukemia cells isolated from spleens of Eu-TCL1-Tg mice. Interestingly, TUNEL assay revealed that there was higher apoptotic cell death found in the Eu-TCL1-Tg spleen tissue compared to the spleens of the Eu-TCL1-Tg:p53-/- mice, suggesting that the loss of p53 compromises the apoptotic process in vivo, and this might in part explain the drug resistant phenotype of CLL cells with 17p-deletion. In the present study, we further demonstrated that the p53 deficiency in the TCL1 transgenic mice resulted in significant down-regulation of microRNAs miR-15a and miR16-1, associated with a substantial up-regulation of Mcl-1, suggesting that the p53-miR15a/16-Mcl-1 axis may play an important role in CLL pathogenesis. Interestingly, we also found that loss of p53 resulted in a significant decrease in expression of the miR-30 family especially miR-30d in leukemia lymphocytes from the Eu-TCL1-Tg:p53-/- mice. Such down-regulation of those microRNAs and up-regulation of Mcl-1 were also found in primary leukemia cells from CLL patients with 17p deletion. To further exam the biological significance of decrease in the miR-30 family in CLL, we investigated the potential involvement of EZH2 (enhancer of zeste homolog 2), a component of the Polycomb repressive complex known to be a downstream target of miR-30d and plays a role in disease progression in several solid cancers. RT-PCR and western blot analyses showed that both EZH2 mRNA transcript and protein levels were significantly increased in the lymphocytes of Eu-TCL1-Tg:p53-/- mice relative to Eu-TCL1-Tg mice. Exposure of leukemia cells isolated from Eu-TCL1-Tg:p53-/- mice to the EZH2 inhibitor 3-deazaneplanocin (DZNep) led to induction of apoptosis, suggesting EZH2 may play a role in promoting CLL cell survival and this may contribute to the aggressive phenotype of CLL with loss of p53. Our study has created a novel CLL mouse model, and suggests that the p53/miR15a/16-Mcl-1 axis & p53/miR30d-EZH2 may contribute to the aggressive phenotype and drug resistance in CLL cells with loss of p53.
Resumo:
ts1 is a neurovirulent spontaneous temperature-sensitive mutant of Moloney murine leukemia virus TB (MoMuLV-TB). MoMuLV-TB causes T-cell lymphoma or lymphoid leukemia in mice after a long latency period whereas ts1 causes a progressive hindlimb paralytic disease after a much shorter latency period. In previous studies, it had been shown that the temperature-sensitive defect resided in the $env$ gene. At the restrictive temperature, the envelope precursor polyprotein, gPr80$\sp{env}$, is inefficiently processed intracellularly into a heterodimer consisting of two cleavage products, gp70 and Prp15E. This inefficient processing is correlated with neurovirulence. In this study, the nucleotide sequences of the env genes for both ts1 and MoMuLV-TB were determined, and the encoded amino acid sequences were deduced from the DNA sequences. There were four unique amino acid substitutions in the gPr80$\sp{env}$ of ts1. In order to determine which unique amino acid was responsible for the phenotypic characteristics of ts1, a set of hybrid genomes was constructed by exchanging restriction fragments between ts1 and MoMuLV-TB. NIH 3T3 cells were transfected with the hybrid genomes to obtain infectious hybrid viruses. Assays of the hybrid viruses showed that a Val-25$\to$Ile substitution in gPr80$\sp{env}$ was responsible for the temperature sensitivity, inefficient processing, and neurovirulence of ts1. In further studies, the Ile-25 in gPr80$\sp{env}$ was substituted with Thr, Ala, Leu, Gly, and Glu by site-directed mutagenesis to generate a new set of mutant viruses, i.e., ts1-T, -A, -L, -G, and -E, respectively. The rank order of the mutants for temperature sensitivity was: ts1-E $>$ ts1-G $>$ ts1-L $>$ ts1-A $>$ ts1 $>$ ts1-T. The degree of temperature sensitivity of each of the mutants also correlated with the degree of inefficient processing of gPr80$\sp{env}$. The mutant viruses were assayed for neurovirulence. ts1-T caused whole body tremor, ts1-A caused hindlimb paralysis, ts1-L caused paraparesis, but ts1-G and -E were not neurovirulent. These results show that inefficient processing of gPr80$\sp{env}$ is correlated with neurovirulence, but if processing of gPr80$\sp{env}$ is too inefficient there is no neurovirulence. Furthermore, the disease profile of each of the neurovirulent viruses depends on the degree of inefficient processing of gPr80$\sp{env}$. ^