43 resultados para Downregulation
Resumo:
TGF-β plays an important role in differentiation and tissue morphogenesis as well as cancer progression. However, the role of TGF-β in cancer is complicate. TGF-β has primarily been recognized as tumor suppressor, because it can directly inhibit cell proliferation of normal and premalignant epithelial cell. However, in the last stage of tumor progression, TGF-β functions as tumor promoter to enhance tumor cells metastatic dissemination and expands metastatic colonies. Currently, the mechanism of how TGF-β switches its role from tumor suppressor to promoter still remains elusive. Here we identify that overexpression of 14-3-3ζ inhibits TGF-β’s cell cytostatic program through destabilizing p53 in non-transformed human mammary epithelial cells. Mechanistically, we found that 14-3-3ζ overexpression leads to 14-3-3σ downregulation, thereby activates PI3K/Akt signaling pathway and degrades p53, and further inhibits TGF-β induced p21 expression and cell cytostatic function. In addition, we found that overexpression of 14-3-3ζ promotes TGF-β induced breast cancer cells bone metastatic colonization through stabilizing Gli2, which is an important co-transcriptional factor for p-smad2 to activate PTHrP expression and bone osteolytic effect. Taken together, we reveal a novel mechanism that 14-3-3ζ dictates the tumor suppressor or metastases promoter activities of TGF-β signaling pathway through switching p-smad2 binding partner from p53 to Gli2. The expected results will not only provide us the better understanding of the important role of 14-3-3ζ in the early stage of breast cancer development, but also deeply impact our knowledge of signaling mechanisms underlying the complex roles of TGF-β in cancer, which will give us a more accurate strategy to determine when and how anti-TGF-β targeted therapy might be effective.
Resumo:
Tumor Suppressor Candidate 2 (TUSC2) is a novel tumor suppressor gene located in the human chromosome 3p21.3 region. TUSC2 mRNA transcripts could be detected on Northern blots in both normal lung and some lung cancer cell lines, but no endogenous TUSC2 protein could be detected in a majority of lung cancer cell lines. Mechanisms regulating TUSC2 protein expression and its inactivation in primary lung cancer cells are largely unknown. We investigated the role of the 5’- and 3’-untranslated regions (UTRs) of the TUSC2 gene in the regulation of TUSC2 protein expression. We found that two small upstream open-reading frames (uORFs) in the 5’UTR of TUSC2 could markedly inhibit the translational initiation of TUSC2 protein by interfering with the “scanning” of the ribosome initiation complexes. Site-specific stem-loop array reverse transcription-polymerase chain reaction (SLA-RT-PCR) verified several micoRNAs (miRNAs) targeted at 3’UTR and directed TUSC2 cleavage and degradation. In addition, we used the established let-7-targeted high mobility group A2 (Hmga2) mRNA as a model system to study the mechanism of regulation of target mRNA by miRNAs in mammalian cells under physiological conditions. There have been no evidence of direct link between mRNA downregulation and mRNA cleavages mediated by miRNAs. Here we showed that the endonucleolytic cleavages on mRNAs were initiated by mammalian miRNA in seed pairing style. Let-7 directed cleavage activities among the eight predicted potential target sites have varied efficiency, which are influenced by the positional and the structural contexts in the UTR. The 5’ cleaved RNA fragments were mostly oligouridylated at their 3’-termini and accumulated for delayed 5’–3’ degradation. RNA fragment oligouridylation played important roles in marking RNA fragments for delayed bulk degradation and in converting RNA degradation mode from 3’–5’ to 5’–3’ with cooperative efforts from both endonucleolytic and non-catalytic miRNA-induced silencing complex (miRISC). Our findings point to a mammalian miRNA-mediated mechanism for the regulation of mRNA that miRNA can decrease target mRNA through target mRNA cleavage and uridine addition
Resumo:
Inflammatory breast cancer (IBC) is a rare but very aggressive form of locally advanced breast cancer (1-6% of total breast cancer patients in United States), with a 5-year overall survival rate of only 40.5%, compared with 85% of the non-IBC patients. So far, a unique molecular signature for IBC able to explain the dramatic differences in the tumor biology between IBC and non-IBC has not been identified. As immune cells in the tumor microenvironment plays an important role in regulating tumor progression, we hypothesized that tumor-associated dendritic cells (TADC) may be responsible for regulating the development of the aggressive characteristics of IBC. MiRNAs can be released into the extracellular space and mediate the intercellular communication by regulating target gene expression beyond their cells of origin. We hypothesized that miRNAs released by IBC cells can induce an increased activation status, secretion of pro-inflammatory cytokines and migration ability of TADC. In an in vitro model of IBC tumor microenvironment, we found that the co-cultured of the IBC cell line SUM-149 with immature dendritic cells (iDCSUM-149) induced a higher degree of activation and maturation of iDCSUM-149 upon stimulation with lipopolysaccharide (LPS) compared with iDCs co-cultured with the non-IBC cell line SUM-159 (iDCSUM-159), resulting in: increased expression of the costimulatory and activation markers; higher production of pro-inflammatory cytokines (TNF-a, IL-6); and 3) higher migratory ability. These differences were due to the exosome-mediated transfer of miR-19a and miR-146a from SUM-149 and SUM-159, respectively, to iDCs, causing the downregulation of the miR-19a target genes PTEN, SOCS-1 and the miR-146a target genes IRAK1, TRAF6. PTEN, SOCS-1 and IRAK1, TRAF6 are important negative and positive regulator of cytokine- and TLR-mediated activation/maturation signaling pathway in DCs. Increased levels of IL-6 induced the upregulation of miR-19a synthesis in SUM-149 cells that was associated with the induction of CD44+CD24-ALDH1+ cancer stem cells (CSCs) with epithelial-to-mesenchymal transition (EMT) characteristics. In conclusion, in IBC tumor microenvironment IL-6/miR-19a axis can represent a self-sustaining loop able to maintain a pro-inflammatory status of DCs, leading to the development of tumor cells with high metastatic potential (EMT CSCs) responsible of the poor prognosis in IBC patients.
Resumo:
Brain metastasis is a common cause of mortality in cancer patients. Approximately 20-30% of breast cancer patients acquire brain metastasis, yet potential therapeutic targets remain largely unknown. The type I insulin-like growth factor receptor (IGF- IR) is known to play a role in the progression of breast cancer and is currently being investigated in the clinical setting for various types of cancer. The present study demonstrates that the IGF-IR signaling axis is constitutively active in brain-seeking sublines of breast cancer cells, driving an increase in in vitro metastatic properties. We demonstrate that IGF-IR signaling is activated in an autocrine manner as a result of IGFBP3 overexpression in brain-seeking cells. Transient and stable knockdown of IGF-IR results in a downregulation of IGF-IR downstream signaling through phospho-AKT, as well as decreased in vitro migration and invasion of MDA- MB-231Br brain-seeking cells. Using an in vivo experimental brain metastasis model, we show that IGF-IR ablation attenuates the establishment of brain metastases and prolongs survival. Finally, we demonstrate that the malignancy of brain-seeking cells is attenuated by pharmacological inhibition with picropodophyllin, an IGF-IR-specific tyrosine kinase inhibitor. Together, our data suggest that the IGF-IR is an important mediator of brain metastasis and its ablation delays the onset of brain metastases in our model system.
Resumo:
The fine balance between proliferation and apoptosis plays a primary role in carcinogenesis. Proto-oncogenes that induce both proliferation and apoptosis provide a powerful inbuilt system to inhibit clonal expansion of cells with high proliferation rates. This provides a restraint to the development of neoplasms. C-myc expressing cells undergo apoptosis in low serum by an unknown mechanism. Several lines of evidence suggested that c-myc induces apoptosis by a transcriptional mechanism. However, the target genes of this program have not been fully defined. Protein synthesis inhibitors induce apoptosis in c-myc over-expressing cells at high serum levels suggesting that inhibition of synthesis of a survival factor may induce apoptosis. We show that the expression of c-myc directly correlates with an increase in the level of a survival protein, bcl-$\rm x\sb{L},$ and a decrease in the pro-apoptotic protein, bax, at both the protein and mRNA level. Furthermore, a significant decrease of the bcl-$\rm x\sb{L}$ protein levels is observed under low serum conditions. In order to investigate the mechanism of regulation of bcl-$\rm x\sb{L}$ and bax by c-myc, the bcl-x and bax promoters were cloned, sequenced and shown to contain c-myc binding sites. The chloramephenicol acetyl transferase (CAT) reporter assay was used to demonstrate activation of the bcl-x promoter by increasing levels of c-myc when co-transfected in COS cells. The bax promoter was also shown to be transrepressed in c-myc expressing cells. The role of bcl-$\rm x\sb{L}$ in apoptosis regulation in c-myc cell lines in normal and low serum was then investigated. Cells lines expressing c-myc and bcl-$\rm x\sb{L}$ were generated and were shown to be resistant to apoptosis induction in low serum. Furthermore, cell lines expressing c-myc, anti-sense bcl-$\rm x\sb{L}$ and $\beta$-galactosidase demonstrated significantly enhanced rates of apoptosis in high serum compared to c-myc Rat 1a cells. These findings suggest that c-myc activates a survival program involving bcl-$\rm x\sb{L}$ upregulation and bax downregulation. However, this survival signal is reduced under low serum conditions by the relative downregulation of bcl-$\rm x\sb{L}$ allowing for apoptosis to proceed. These data also directly demonstrates that downregulation in the level of bcl-$\rm x\sb{L}$ associated with low serum conditions is a critical determinant of c-myc induced apoptosis. ^
Resumo:
Cellular oncogenes and tumor suppressor genes regulate cellular adhesion and proliferation, two important events in malignant transformation. Even though receptor-like protein tyrosine phosphatases (R-PTPs) can influence these events, their role in malignant transformation has not been studied. The major goal of this study was to determine whether downregulation of R-PTP$\mu$ expression in lung epithelial cells is associated with or causal to neoplastic transformation. Examination of R-PTP$\mu$ expression in normal and carcinoma cells demonstrated that lung epithelial cells expressed R-PTP$\mu$ whereas lung carcinoma cells did not, and that incubation with TGF-$\alpha$ and HGF induced a two fold increase in R-PTP$\mu$ mRNA expression. To associate the expression of R-PTP$\mu$ with neoplastic transformation, we transfected lung epithelial cells with the H-ras oncogene. Transformation resulted in the activation of the MAPK signal transduction pathway, the hyperphosphorylation of c-met, and the production of HGF. Upon analysis of R-PTP$\mu$ expression, we observed a significant decrease in R-PTP$\mu$ mRNA and protein levels suggesting that transformation can directly or indirectly downregulate the expression of R-PTP$\mu.$ TGF-$\beta$ reversed the H-ras transformed phenotype, an event directly correlated with upregulation of R-PTP$\mu.$ To provide a casual relationship between R-PTP$\mu$ and cessation of tumor cell growth, we transfected carcinoma cells with the wild type R-PTP$\mu$ cDNA. Transiently expressing cells were selected by FACS using the mAb 3D7 and plated into individual wells. Carcinoma cells positive for R-PTP$\mu$ expression did not grow into colonies whereas non-R-PTP$\mu$ expressing carcinoma cells did, suggesting that expression of R-PTP$\mu$ arrested cell growth. To better understand the growth arrest induced by R-PTP$\mu$, we transfected the H-ras transformed lung epithelial cell line (MvLu-1-ras) with R-PTP$\mu$ (MvLu-1-ras/R-PTP$\mu$). Examination of growth factor receptor phosphorylation revealed significant inhibition of c-met and EGF-R. Furthermore, these cells underwent apoptosis in the absence of serum. Taken together the data demonstrate that the downregulation of R-PTP$\mu$ expression is an important step in neoplastic transformation of lung epithelial cells and that its presence can induce apoptosis and inhibit the signaling of c-met and EGF-R, two major growth factor receptors in lung carcinoma. In conclusion, the expression of R-PTP$\mu$ is inversely correlated with neoplastic transformation, growth and survival of tumor cells. ^
Resumo:
A major portion of this thesis work was dedicated to study the nature and significance of spliced introns. The initial work was focused on studying the IVS1$\sb{\rm C\beta 1}$ intron from a T-cell receptor (TCR)-$\beta$ gene. Compared to an intron lariat control from adenovirus pre-mRNA that was spliced in vitro, IVS1$\sb{\rm C\beta 1}$ was debranched less efficiently by HeLa S100 extracts, although IVS1$\sb{\rm C\beta 1}$ also used the consensus branchpoint in vivo. Subcellular-fractionation analysis showed that most IVS1$\sb{\rm C\beta 1}$ lariats cofractionated with pre-mRNA in the nucleus, consistent with the possibility that intron degradation releases splicing factors which will be available for further rounds of splicing. The half-life of IVS1$\sb{\rm C\beta 1}$ from the endogenous TCR-$\beta$ gene was measured using the general transcription inhibitor actinomycin D to be about $\sim$15 min, which was similar to that of unstable mRNAs such as c-myc mRNA.^ The general transcription inhibitor DRB was also used for intron stability analysis. Unexpectedly, DRB decreased intron and pre-mRNA levels only initially, it later increased the levels of intron-containing RNAs. Inhibition of transcription initiation appeared to be the major early effect (the reduction phase); whereas enhanced premature transcription termination was dominant later (the induction phase).^ Having established the procedures for studying in vivo spliced introns, this approach was applied to study the mechanism of nonsense-mediated downregulation (NMD), a phenomena in which premature termination codons (PTCs) decrease the levels of mRNAs. In this study, the novel intron-oriented approach was applied to study the mechanism of NMD. The levels of spliced introns immediately upstream and downstream of a PTC-bearing exon in a TCR-$\beta$ gene were identified and analyzed along with their pre-mRNA. Although PTC reduced the mRNA levels by 4 to 9 fold, the steady-state levels of spliced introns and the pre-mRNA-to-intron ratios were not significantly altered, indicating that the PTC did not significantly inhibit TCR-$\beta$ RNA splicing. Consistent with this conclusion, the half-lives of the PTC$\sp+$ and PTC$\sp-$ pre-mRNA were similar. The protein synthesis inhibitor cyclohexmide (CHX) upregulated the levels of the PTC$\sp+$ mRNA over 10 fold without affecting the levels of the spliced introns, suggesting that the reversal effect of CHX was through stabilization, not production. These results indicated that inhibition of splicing could not be the major mechanism for the NMD pathway of the TCR-$\beta$ gene, instead, suggesting that mRNA destabilization may be more important. (Abstract shortened by UMI.) ^
Resumo:
The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^
Resumo:
Growth and regeneration of postnatal skeletal muscle requires a population of mononuclear myogenic cells, called satellite cells to add/replace myonuclei, which are postmitotic. Wedged between the sarcolemma and the basal lamina of the skeletal muscle fiber, these cells function as the stem cells of mature muscle fibers. Like other normal diploid cells, satellite cells undergo cellular senescence. Investigations of aging in both rodents and humans have shown that satellite cell self-renewal capacity decreases with advanced age. As a consequence, this could be a potential reason for the characteristically observed age-associated loss in skeletal muscle mass (sarcopenia). This provided the rationale that any intervention that can further increase the proliferative capacity of these cells should potentially be able to either delay, or even prevent sarcopenia. ^ Using clonogenicity assays to determine a cell's proliferation potential, these studies have shown that IGF-I enhances the doubling potential of satellite cells from aged rodents. Using a transgenic model, where the mice express the IGF-I transgene specifically in their striated muscles, some of the underlying biochemical mechanisms for the observed increase in replicative life span were delineated. These studies have revealed that IGF-I activates the PI3/Akt pathway to mediate downregulation of p27KIP1, which consequently is associated with an increase in cyclin E-cdk2 kinase activity, phosphorylation of pRb, and upregulation of cyclin A protein. However, the beneficial effects of IGF-I on satellite cell proliferative potential appears to be limited as chronic overexpression of IGF-I in skeletal muscles did not protect against sarcopenia in 18-mo old mice, and was associated with an exhaustion of satellite cell replicative reserves. ^ These results have shown that replicative senescence can be modulated by environmental factors using skeletal muscle satellite cells as a model system. A better understanding of the molecular basis for enhancement of proliferative capacity by IGF-I will provide a rational basis for developing more effective counter-measures against physical frailty. However, the implications of these studies are that these beneficial effects of enhanced proliferative potential by IGF-I may only be over a short-term period, and other alternative approaches may need to be considered. ^
Resumo:
c-Met is the protein tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF) and mediates several normal cellular functions including proliferation, survival, and migration. Overexpression of c-Met correlates with progression and metastasis of human colorectal carcinoma (CRC). The goals of this study were to determine if overexpression of c-Met directly contributes to tumorigenicity and liver metastatic potential of colon cancer, and what are the critical pathways regulated by c-Met in this process. The studies used two colon tumor cell lines, KM12SM and KM20, which express high levels of constitutively active c-Met and are highly metastatic in nude mice. To examine the effects of c-Met overexpression, subclones of theses lines with reduced c-Met expression were obtained following transfection with a c-Met specific targeting ribozyme. Reduction of c-Met in KM12SM cells abolished liver metastases when cells were injected intrasplenically in an experimental metastasis assay. However, c-Met downregulation in theses clones was unstable. Three stable KM20 clones with a 25–35% reduction in c-Met protein levels but 60–90% reduction in basal c-Met autophosphorylation and kinase activity were obtained. While HGF increased c-Met kinase activity in the clones with reduced c-Met, the activity was less than that observed in parental or control transfected cells. Correlating with the reduction in c-Met kinase activity, subclones with reduced c-Met expression had significantly reduced in vitro growth rates, soft-agar colony forming abilities, and increased apoptosis. HGF/SF treatment did not affect anchorage-dependent growth or soft-agar colony forming abilities. Further, c-Met downregulation significantly impaired the ability of HGF/SF to induce migration. To examine the effects of reduced c-Met on tumor formation, parental and c-Met reduced KM20 cells were grown subcutaneously and intrahepatically in nude mice. c-Met downregulation delayed, but did not abolish growth at the subcutaneous site. When these cells were injected intrahepatically, both tumor incidences and size were significantly reduced. To further understand the molecular basis of c-Met in promoting tumor growth, the activation of several signaling intermediates that have been implicated in c-Met mediated growth, survival and migration were compared between KM20 parental cells and subclones with reduced c-Met expression levels. The expression and activity (as determined by phosphorylation) of AKT and Erk1/2 were unaltered. In contrast, Src kinase activity, as measured by immune complex kinase assay, was reduced 2–5 fold following c-Met downregulation. As Src has been implicated in growth, survival and migration, Src activation in c-Met overexpressing lines is likely contributing to the tumorigenic and metastatic capabilities of colon tumor cell lines that overexpress c-Met. Collectively, these results suggest that c-Met overexpression plays a causal role in the development of CRC liver metastases, and that c-Src and c-Met inhibitors may be of potential therapeutic benefit for late-stage colon cancer. ^
Resumo:
Non-Hodgkin's lymphomas are common tumors of the human immune system, primarily of B cell lineage (NHL-B). Negative growth regulation in the B cell lineage is mediated primarily through the TGF-β/SMAD signaling pathway that regulates a variety of tumor suppressor genes. Ski was originally identified as a transforming oncoprotein, whereas SnoN is an isoform of the Sno protein that shares a large region of homology with Ski. In this study, we show that Ski/SnoN are endogenously over-expressed both in patients' lymphoma cells and NHL-B cell lines. Exogenous TGF-β1 treatment induces down-regulation of Ski and SnoN oncoprotein expression in an NHL-B cell line, implying that Ski and SnoN modulate the TGF-β signaling pathway and are involved in cell growth regulation. Furthermore, we have developed an NHL-B cell line (DB) that has a null mutation in TGF-β receptor type II. In this mutant cell line, Ski/SnoN proteins are not down-regulated in response to TGF-β1 treatment, suggesting that downregulation of Ski and SnoN proteins in NHL-B require an intact functional TGF-β signaling pathway Resting normal B cells do not express Ski until activated by antigens and exogenous cytokines, whereas a low level of SnoN is also present in peripheral blood Go B cells. In contrast, autonomously growing NHL-B cells over-express Ski and SnoN, implying that Ski and SnoN are important cell cycle regulators. To further investigate a possible link between reduction of the Ski protein level and growth inhibition, Ski antisense oligodeoxynucleotides were transfected into NHL-B cells. The Ski protein level was found to decrease to less than 40%, resulting in restoring the effect of TGF-β and leading to cell growth inhibition and G1 cell cycle arrest. Co-immunoprecipitation experiments demonstrated that Ski associates with Smad4 in the nucleus, strongly suggesting that over-expression of the nuclear protein Ski and/or SnoN negatively regulates the TGF-β pathway, possibly by modulating Smad-mediated tumor suppressor gene expression. Together, in NHL-B, the TGF-β/SMAD growth inhibitory pathway is usually intact, but over-expression of the Ski and/or SnoN, which binds to Smad4, abrogates the negative regulatory effects of TGF-β/SMAD in lymphoma cell growth and potentiates the growth potential of neoplastic B cells. ^
Resumo:
Cardiovascular disease (CVD) is the leading cause of death in the United States. One manifestation of CVD known to increase mortality is an enlarged, or hypertrophic heart. Hypertrophic cardiomyocytes adapt to increased contractile demand at the genetic level with a re-emergence of the fetal gene program and a downregulation of fatty acid oxidation genes with concomitant increased reliance on glucose-based metabolism. To understand the transcriptional regulatory pathways that implement hypertrophic directives we analyzed the upstream promoter region of the muscle specific isoform of the nuclear-encoded mitochondrial gene, carnitine palmitoyltransferase-1β (CPT-1β) in cultured rat neonatal cardiac myocytes. This enzyme catalyzes the rate-limiting step of fatty acid entry into β-oxidation and is downregulated in cardiac hypertrophy and failure, making it an attractive model for the study of hypertrophic gene regulation and metabolic adaptations. We demonstrate that the muscle-enriched transcription factors GATA-4 and SRF synergistically activate CPT-1β; moreover, DNA binding to cognate sites and intact protein structure are required. This mechanism coordinates upregulation of energy generating processes with activation of the energy consuming contractile promoter for cardiac α-actin. We hypothesized that fatty acid or glucose responsive transcription factors may also regulate CPT-1β. Oleate weakly stimulates CPT-1β activity; in contrast, the glucose responsive Upstream Stimulatory Factors (USF) dramatically depresses the CPT-1β reporter. USF regulates CPT-1β through a novel physical interaction with the cofactor PGC-1 and abrogation of MEF2A/PGC-1 synergistic stimulation. In this way, USF can inversely regulate metabolic gene programs and may play a role in the shift of metabolic substrate preference seen in hypertrophy. Failing hearts have elevated expression of the nuclear hormone receptor COUP-TF. We report that COUP-TF significantly suppresses reporter transcription independent of DNA binding and specific interactions with GATA-4, Nkx2.5 or USF. In summary, CPT-1β transcriptional regulation integrates mitochondrial gene expression with two essential cardiac functions: contraction and metabolic substrate oxidation. ^
Resumo:
A Western Array Screening system in conjunction with an in vitro lung carcinogenesis model, which consists of human bronchial epithelial (HBE) cells representing normal (NHBE), immortalized (BEAS-2B and 1799), transformed (1198), and tumorigenic (1170-I) was used to test the hypothesis that lung carcinogenesis involves specific changes in signaling proteins. Forty six proteins whose expression was upregulated by >2 fold and 23 proteins whose expression was downregulated by >2 fold in 1170-I compared to NHBE cells were identified. The levels of six proteins including bFGF (both intracellular and secreted), Akt and p70s6K in the PI3KJp70s6K pathway and the bFGF receptor (FGFR1) were upregulated in different stages of lung carcinogenesis. Akt activity and phospho-p70s6K were also increased in 1170-I compared to NHBE cells, suggesting that PI3K/p70s6K pathway is activated during lung carcinogenesis. bFGF treatment stimulated the growth of the 1170-I cells. Both tyrosine phosphorylation of FGFR1 and cell growth were inhibited in 1170-I cells after overexpression of dominant-negative(DN) FGFR1. Growth inhibition involved a G2 arrest related to decreased cdc2 activity, cdc25C downregulation, Wee1, p21(WAF1) and p27(Kip1) upregulation. Apoptosis was observed in tumorigenic but not in normal cells after overexpression of DNFGFR1. Confluent NHBE cells, were much less sensitive to the growth inhibition by DNFGFR1 compared to other cell lines analyzed. bFGF increased phospho-Akt and phospho-p70s6K in 1170-I cells. The Akt inhibitor LY294002 and the p70s6K inhibitor rapamycin inhibited bFGF-stimulated cell growth in 1170-I cells. Both agents downregulated the bFGF-induced increase in S phase by inducing G1 arrest. Also, LY294002 inhibited bFGF increased phospho-Akt, while both LY294002 and rapamycin inhibited bFGF increased phospho-p70s6K. Thus, cell proliferation stimulated by bFGF in 1170-I cells was at least partially mediated by PI3K/p70s6K pathway. Hsp90 was upregulated by bFGF in 1170-I cells. Its inhibitor geldanamycin inhibited the bFGF-stimulated growth via inducing apoptosis and G2 arrest through decreases in cdc2 expression/activity and p21 upregulation, and decreased Akt/phospho-Akt, p70s6K/phospho-p70s6K and Bad. Hsp90, p70s6K and Bad were found in the same complex, which may be important for signaling cell survival. Taken together, our study suggests that bFGF signaling, especially PI3K/p70s6K pathway, is important for lung carcinogenesis. ^