32 resultados para Cancer survival


Relevância:

30.00% 30.00%

Publicador:

Resumo:

PAX2 is one of nine PAX genes regulating tissue development and cellular differentiation in embryos. PAX2 promotes cell proliferation, oncogenic transformation, cell-lineage specification, migration, and survival. Unattenuated PAX2 has been found in several cancer types. We therefore sought to elucidate the role of PAX2 in ovarian carcinomas. We found that PAX2 was expressed in low-grade serous, clear cell, endometrioid and mucinous cell ovarian carcinomas, which are relatively chemoresistant compared to high grade serous ovarian carcinomas. Four ovarian cancer cell lines, RMUGL (mucinous), TOV21G (clear cell), MDAH-2774 (endometrioid) and IGROV1 (endometrioid), which express high-levels of PAX2, were used to study the function of PAX2. Lentiviral shRNAs targeting PAX2 were used to knock down PAX2 expression in these cell lines. Cellular proliferation and motility assays subsequently showed that PAX2 stable knockdown had slower growth and migration rates. Microarray gene expression profile analysis further identified genes that were affected by PAX2 including the tumor suppressor gene G0S2. Reverse phase protein array (RPPA) data showed that PAX2 knockdown affected several genes that are involved in apoptosis, which supports the fact that downregulation of PAX2 in PAX2-expressing ovarian cancer cells inhibits cell growth. We hypothesize that this growth inhibition is due to upregulation of the tumor suppressor gene G0S2 via induction of apoptosis. PAX2 represents a potential therapeutic target for chemoresistant PAX2-expressing ovarian carcinomas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human cancer develops as a result of accumulation of mutations in oncogenes and tumor suppressor genes. Zinc finger protein 668 (ZNF668) has recently been identified and validated as one of the highly mutated genes in breast cancer, but its function is entirely unknown. Here, we report two major functions of ZNF668 in cancer development. (1) ZNF668 functions as a tumor suppressor by regulating p53 protein stability and function. We demonstrate that ZNF668 is a nucleolar protein that physically interacts with both MDM2 and p53. By binding to MDM2, ZNF668 regulates MDM2 autoubiquitination and prevents MDM2-mediated p53 ubiquitination and degradation; ZNF668 deficiency impairs DNA damage-induced p53 stabilization. Notably, ZNF668 effectively suppresses breast cancer cell proliferation and transformation in vitro and tumorigenicity in vivo. Consistently, ZNF668 knockdown readily transforms normal mammary epithelial cells. Together, our studies identify ZNF668 as a novel breast tumor suppressor gene that acts at least in part by regulating the stability and function of p53. (2) ZNF668 functions as a DNA repair protein by regulating histone acetylation. DNA repair proteins need to access the chromatin by chromatin modification or remodeling to use DNA template within chromatin. Dynamic posttranslational modifications of histones are critical for cells to relax chromatin in DNA repair. However, the precise underlying mechanism mediating enzymes responsible for these modifications and their recruitment to DNA lesions remains poorly understood. We observed ZNF668 depletion causes impaired chromatin relaxation as a result of impaired DNA-damage induced histone H2AX hyper-acetylation. This results in the decreased recruitment of repair proteins to DNA lesions, defective homologous recombination (HR) repair and impaired cell survival after DNA damage, albeit with the presence of a functional ATM/ATR dependent DNA-damage signaling cascade. Importantly, the impaired loading of repair proteins and the defect in DNA repair in ZNF668-deficient cells can be counteracted by chromatin relaxation, indicating that the DNA-repair defect that was observed in the absence of ZNF668 is due to impeded chromatin accessibility at sites of DNA breaks. Our findings therefore identify ZNF668 as a key molecule that links chromatin relaxation with response to DNA damage in the control of DNA repair.