34 resultados para Ca2 -related genes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex diseases, such as cancer, are caused by various genetic and environmental factors, and their interactions. Joint analysis of these factors and their interactions would increase the power to detect risk factors but is statistically. Bayesian generalized linear models using student-t prior distributions on coefficients, is a novel method to simultaneously analyze genetic factors, environmental factors, and interactions. I performed simulation studies using three different disease models and demonstrated that the variable selection performance of Bayesian generalized linear models is comparable to that of Bayesian stochastic search variable selection, an improved method for variable selection when compared to standard methods. I further evaluated the variable selection performance of Bayesian generalized linear models using different numbers of candidate covariates and different sample sizes, and provided a guideline for required sample size to achieve a high power of variable selection using Bayesian generalize linear models, considering different scales of number of candidate covariates. ^ Polymorphisms in folate metabolism genes and nutritional factors have been previously associated with lung cancer risk. In this study, I simultaneously analyzed 115 tag SNPs in folate metabolism genes, 14 nutritional factors, and all possible genetic-nutritional interactions from 1239 lung cancer cases and 1692 controls using Bayesian generalized linear models stratified by never, former, and current smoking status. SNPs in MTRR were significantly associated with lung cancer risk across never, former, and current smokers. In never smokers, three SNPs in TYMS and three gene-nutrient interactions, including an interaction between SHMT1 and vitamin B12, an interaction between MTRR and total fat intake, and an interaction between MTR and alcohol use, were also identified as associated with lung cancer risk. These lung cancer risk factors are worthy of further investigation.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) is a threat to public health. It has been reported to be the leading cause of death in United States. The invention of next generation sequencing (NGS) technology has revolutionized the biomedical research. To investigate NGS data of CVD related quantitative traits would contribute to address the unknown etiology and disease mechanism of CVD. NHLBI's Exome Sequencing Project (ESP) contains CVD related phenotypes and their associated NGS exomes sequence data. Initially, a subset of next generation sequencing data consisting of 13 CVD-related quantitative traits was investigated. Only 6 traits, systolic blood pressure (SBP), diastolic blood pressure (DBP), height, platelet counts, waist circumference, and weight, were analyzed by functional linear model (FLM) and 7 currently existing methods. FLM outperformed all currently existing methods by identifying the highest number of significant genes and had identified 96, 139, 756, 1162, 1106, and 298 genes associated with SBP, DBP, Height, Platelet, Waist, and Weight respectively. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At issue is whether or not isolated DNA is patent eligible under the U.S. Patent Law and the implications of that determination on public health. The U.S. Patent and Trademark Office has issued patents on DNA since the 1980s, and scientists and researchers have proceeded under that milieu since that time. Today, genetic research and testing related to the human breast cancer genes BRCA1 and BRCA2 is conducted within the framework of seven patents that were issued to Myriad Genetics and the University of Utah Research Foundation between 1997 and 2000. In 2009, suit was filed on behalf of multiple researchers, professional associations and others to invalidate fifteen of the claims underlying those patents. The Court of Appeals for the Federal Circuit, which hears patent cases, has invalidated claims for analyzing and comparing isolated DNA but has upheld claims to isolated DNA. The specific issue of whether isolated DNA is patent eligible is now before the Supreme Court, which is expected to decide the case by year's end. In this work, a systematic review was performed to determine the effects of DNA patents on various stakeholders and, ultimately, on public health; and to provide a legal analysis of the patent eligibility of isolated DNA and the likely outcome of the Supreme Court's decision. ^ A literature review was conducted to: first, identify principle stakeholders with an interest in patent eligibility of the isolated DNA sequences BRCA1 and BRCA2; and second, determine the effect of the case on those stakeholders. Published reports that addressed gene patents, the Myriad litigation, and implications of gene patents on stakeholders were included. Next, an in-depth legal analysis of the patent eligibility of isolated DNA and methods for analyzing it was performed pursuant to accepted methods of legal research and analysis based on legal briefs, federal law and jurisprudence, scholarly works and standard practice legal analysis. ^ Biotechnology, biomedical and clinical research, access to health care, and personalized medicine were identified as the principle stakeholders and interests herein. Many experts believe that the patent eligibility of isolated DNA will not greatly affect the biotechnology industry insofar as genetic testing is concerned; unlike for therapeutics, genetic testing does not require tremendous resources or lead time. The actual impact on biomedical researchers is uncertain, with greater impact expected for researchers whose work is intended for commercial purposes (versus basic science). The impact on access to health care has been surprisingly difficult to assess; while invalidating gene patents might be expected to decrease the cost of genetic testing and improve access to more laboratories and physicians' offices that provide the test, a 2010 study on the actual impact was inconclusive. As for personalized medicine, many experts believe that the availability of personalized medicine is ultimately a public policy issue for Congress, not the courts. ^ Based on the legal analysis performed in this work, this writer believes the Supreme Court is likely to invalidate patents on isolated DNA whose sequences are found in nature, because these gene sequences are a basic tool of scientific and technologic work and patents on isolated DNA would unduly inhibit their future use. Patents on complementary DNA (cDNA) are expected to stand, however, based on the human intervention required to craft cDNA and the product's distinction from the DNA found in nature. ^ In the end, the solution as to how to address gene patents may lie not in jurisprudence but in a fundamental change in business practices to provide expanded licenses to better address the interests of the several stakeholders. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An important question in developmental biology is how embryonic cell types are derived from a fertilized egg. To address this question, this thesis investigates the mechanisms by which the aboral ectoderm-specific Spec2a gene is spatially and temporally regulated during sea urchin embryogenesis. The Spec2a gene of the sea urchin Strongylocentratus purpuratus has served as a valuable maker to understand the basis of lineage-specific gene activation and the role of transcription factors in cell fate specification. The hypothesis is that transcription factors responsible for cell type-specific gene activation are key components in the initial cell specification step. The Spec2a gene, which encodes a small cytosolic calcium-binding protein, is expressed exclusively in aboral ectoderm cell lineages. The 1516-bp control region of the Spec2a gene contains a 188-bp enhancer element required for temporal activation and aboral ectoderm/mesenchyme cell expression, while an unidentified element upstream of the enhancer represses expression in mesenchyme cells. Using an enhancer activation assay, combined with site-directed mutagenesis, I showed that three TAATCC/T sites within the enhancer are responsible for enhancer activity. Mutagenizing these sites and a fourth one just upstream abolished all activity from the Spec2a control region. A 77-bp DNA fragment from the Spec2a enhancer containing two of the TAATCC/T sites is sufficient for aboral ectoderm/mesenchyme cell expression. A cDNA encoding SpOtx, an orthodenticle-related protein, was cloned from S. purpuratus and shown to bind with high affinity to the TAATCC/T sequences within the Spec2a control region. SpOtx transcripts were found initially in all cells of the cleaving embryo, but they gradually became restricted to oral ectoderm and endoderm cells, suggesting that SpOtx might play a role in the initial temporal activation of the Spec2a gene and most likely has additional functions in the developing embryo. To reveal the broader biological functions of SpOtx, I injected SpOtx mRNA into living sea urchin eggs to determine what effects overexpressing the SpOtx protein might have on embryo development. SpOtx mRNA-injected embryos displayed dramatic alterations in development. Instead of developing into pluteus larvae with 15 different cell types, uniform epithelia balls were formed. These balls consisted of a thin layer of squamous cells with short cilia highly reminiscent of aboral ectoderm. Immunohistochemical staining and RT-PCR demonstrated that the SpOtx-injected embryoids expressed aboral ectoderm markers uniformly, but showed very weak or no expression of markers for non-aboral ectoderm cell types. These data strongly suggested that overexpression of SpOtx redirected the normal fate of non-aboral ectoderm cells to that of aboral ectoderm. These results show that SpOtx is involved in aboral ectoderm differentiation by activating aboral ectoderm-specific genes and that modulating its expression can lead to changes in cell fate. ^