35 resultados para CYTOCHROME-P450 1A1


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-pregnant, female adult rats pretreated with either phenobarbital (PB) or (beta)-naphthoflavone ((beta)NF) through short-course intraperitoneal injections were shown by sodium dithionite-reduced carbon monoxide difference spectroscopy and NADPH-cytochrome c in vitro assay to contain cytochrome P-450 and NADPH-dependent reductase associated with the microsomal fraction of colon mucosa. These two protein components of the mixed function oxidase system were released from the microsomal membrane, resolved from each other, and partially purified by using a combination of techniques including solubilization in nonionic detergent followed by ultracentrifugation, anion exchange and adsorption column chromatographies, native gel electrophoresis, polyethylene glycol fractionation and ultrafiltration.^ In vitro reconstitution assays demonstrated the cytochrome P-450 fraction as the site of substrate and molecular oxygen binding. By the use of immunochemical techniques including radial immunodiffusion, Ouchterlony double diffusion and protein electroblotting, the cytochrome P-450 fraction was shown to contain at least 5 forms of the protein, having molecular weights as determined by SDS gel electrophoresis identical to the corresponding hepatic cytochrome P-450. Estimation of total cytochrome P-450 content confirmed the preferential induction of particular forms in response to the appropriate drug pretreatment.^ The colonic NADPH-dependent reductase was isolated from native gel electrophoresis and second dimensional SDS gel electrophoresis was performed in parallel to that for purified reductase from liver. Comparative electrophoretic mobilities together with immunochemical analysis, as with the cytochrome P-450s, reconstitution assays, and kinetic characterization using artificial electron acceptors, gave conclusive proof of the structural and functional homology between the colon and liver sources of the enzyme.^ Drug metabolism was performed in the reconstituted mixed function oxidase system containing a particular purified liver cytochrome P-450 form or partially pure colon cytochrome P-450 fraction plus colon or liver reductase and synthetic lipid vesicles. The two drugs, benzo{(alpha)}pyrene and benzphetamine, which are most representative of the action of system in liver, lung and kidney, were tested to determine the specificity of the reconstituted system. The kinetics of benzo{(alpha)}pyrene hydroxylation were followed fluorimetrically for 3-hydroxybenzo{(alpha)}pyrene production. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochromes P450 4Fs (CYP4F) are a subfamily of enzymes involved in arachidonic acid metabolism with highest catalytic activity towards leukotriene B 4 (LTB4), a potent chemoattractant involved in prompting inflammation. CYP4F-mediated metabolism of LTB4 leads to inactive ω-hydroxy products incapable of initiating chemotaxis and the inflammatory stimuli that result in the influx of inflammatory cells. Our hypothesis is based on the catalytic ability of CYP4Fs to inactivate pro-inflammatory LTB4 which assures these enzymes a pivotal role in the process of inflammation resolution. ^ To test this hypothesis and evaluate the changes in CYP4F expression under complex inflammatory conditions, we designed two mouse models, one challenged with lipopolysaccharide (LPS) as a sterile model of sepsis and the other challenged with a systemic live bacterial infection of Citrobacter rodentium, an equivalent of the human enterobacterium E. coli pathogen invasion. Based on the evidence that Peroxisome Proliferator Activated Receptors (PPARs) play an active role in inflammation regulation, we also examined PPARs as a regulation mechanism in CYP4F expression during inflammation using PPARα knockout mice under LPS challenge. Using the Citrobacter rodentium model of inflammation, we studied CYP4F levels to compare them to those in LPS challenged animals. LPS-triggered inflammation signal is mediated by Toll-like 4 (TLR4) receptors which specifically respond to LPS in association with several other proteins. Using TLR4 knockout mice challenged with Citrobacter rodentium we addressed possible mediation of CYP4F expression regulation via these receptors. ^ Our results show isoform- and tissue-specific CYP4F expression in all the tissues examined. The Citrobacter rodentium inflammation model revealed significant reduction in liver expression of CYP4F14 and CYP4F15 and an up-regulation of gene expression of CYP4F16 and CYP4F18. TLR4 knockout studies showed that the decrease in hepatic CYP4F15 expression is TLR4-dependent. CYP4F expression in kidney shows down-regulation of CYP4F14 and CYP4F15 and up-regulation of CYP4F18 expression. In the LPS inflammation model, we showed similar patterns of CYP4F changes as in Citrobacter rodentium -infected mice. The renal profile of CYP4Fs in PPARα knockout mice with LPS challenge showed CYP4F15 down-regulation to be PPARα dependent. Our study confirmed tissue- and isoform-specific regulation of CYP4F isoforms in the course of inflammation. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochromes P450 catalyze a monooxygenase reaction in which molecular oxygen is split and one oxygen atom is incorporated into the substrate. As a whole, P450 researchers have focused most of their attention on substrate metabolism and relatively little on how these enzymes are regulated. This study will focus on the regulation of two P450 isoforms known as, CYP2D6 and CYP4F11. ^ The human CYP2D gene locus contains two pseudogenes and one functional gene known as CYP2D6. This locus is highly polymorphic and produces several alternatively spliced transcripts from the pseudogene CYP2D7. My objective was to understand the role of SV5-in (splice variant 5), one of several alternative splice variants transcribed from the CYP2D7 pseudogene. My results indicate that SV5-in mRNA causes an increase in CYP2D6 protein levels and suggest that there is a role for SV5-in in regulation of CYP2D6 expression. ^ Second, CYP4F11 is a recently discovered and uncharacterized isoform, derived from the CYP4F subfamily. It metabolizes several clinically relevant drugs (i.e.—erythromycin and benzphetamine) and some endogenous inflammatory mediators (i.e.—LTB4). After evaluation of microarray data, I observed an increase in CYP4F11 mRNA levels from wild-type HCT116 cells compared to p53-null cells. Our objectives were to explore and understand this connection between p53 and CYP4F11. Microarray data were confirmed by Q-PCR, after which this effect was again observed at the protein level via Western blot and again at the promoter level via luciferase assay and chromatin immunoprecipitation. Our results indicate that p53 protein regulates expression of CYP4F11 mRNA and protein through CYP4F11 promoter binding (note that p53 binding to CYP4F11 DNA was not shown to be direct). These results signify a whole new level of regulation of drug metabolizing enzymes by p53. ^ An understanding of CYP4F11 regulation by p53 could help us understand another pathway leading to apoptosis or cell growth arrest. This can aid future drug studies and discover new drug metabolism pathways under the control of a tumor suppressor protein. An understanding of the CYP2D6 regulation pathway could illuminate the role of non-coding RNAs in the P450 field and potentially explain several inter-individual drug response variations observed in clinical medicine that are not yet completely explained by genotyping analysis. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NADPH cytochrome P-450 reductase releases FMN and FAD upon dilution into slightly acidic potassium bromide. The flavins are released with positive cooperativity. Dithiothreitol protects the FAD dependent cytochrome c reductase activity against inactivation by free radicals. Behavior in potassium bromide is sensitive to changes in the pH. High performance hydroxylapatite resolved the FAD dependent reductase from holoreductase. For 96% FAD dependent reductase, the overall yield was 12%.^ High FAD dependence was matched by a low FAD content, with FAD/FMN as low as 0.015. There were three molecules of FMN for every four molecules of reductase. The aporeductase had negligible activity towards cytochrome c, ferricyanide, menadione, dichlorophenolindophenol, nitro blue tetrazolium, oxygen and acetyl pyridine adenine dinucleotide phosphate. A four minute incubation in FAD reconstituted one half to all of the specific activity, per milligram protein, of untreated reductase, depending upon the substrate. After a two hour reconstitution, the reductase eluted from hydroxylapatite at the location of holoreductase. It had little flavin dependence, was equimolar in FMN and FAD, and had nearly the specific activity (per mole flavin) of untreated reductase.^ The lack of activity and the ability of FMN to also reconstitute suggest that the redox center of FAD is essential for catalysis, rather than for structure. Dependence upon FAD is consistent with existing hypotheses for the catalytic cycle of the reductase. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was to examine the possible mechanisms for the regulation of cytochrome c gene expression in response to increased contractile activity in rat skeletal muscle. The working hypothesis was that increased contractile activity enhances cytochrome c gene expression through a cis-element. A 110% increase in cytochrome c mRNA concentration was observed in tibialis anterior (TA) muscle after 9 days of chronic stimulation. Similar difference (120%) exists between soleus (SO) muscle of higher contractile activity and white vastus lateralis (WV) muscle of lower contractile activity. These results suggest that the endogenous cytochrome c gene expression is regulated by contractile activity. Cytochrome c-reporter genes were injected into skeletal muscles to identify the cis-element that is responsible for the regulation. Although the data was inconclusive, part of it suggested the importance of the 3$\sp\prime$-untranslated region (3$\sp\prime$-UTR) in mediating the response to increased contractile activity.^ RNA gel mobility shift (GMSA) and ultraviolet (UV) cross-linking assays revealed specific RNA-protein interaction in a 50-nucleotide region of the 3$\sp\prime$-UTR in unstimulated TA muscle. Computer analysis predicted a stem-loop structure of 17 nucleotides, which provides a structural basis for RNA-protein interaction. These 17 nucleotides are 100% conserved among rat, mouse and human cytochrome c genes and their 13 pseudogenes, suggesting a functional role for this region. The RNA-protein interaction was significantly less in highly active SO muscle than in inactive WV muscle and was dramatically decreased in stimulated TA muscle due to a protein inhibitor(s) associated with ribosome. It is possible that cytochrome c mRNAs undergoing translation are subject to a compartmentalized regulatory influence.^ The conclusion from these results is that increases in contractile activity induce or activate a protein inhibitor(s) associated with ribosome in rat skeletal muscle. The inhibitor decreases RNA-protein interaction in the 3$\sp\prime$-UTR of cytochrome c mRNA, which may result in increased mRNA stability and/or translation. ^