39 resultados para ACTIN
Resumo:
To meet the requirements for rapid tumor growth, a complex array of non-neoplastic vascular, fibroblastic, and immune cells are recruited to the tumor microenvironment. Understanding the origin, composition, and mechanism(s) for recruitment of these stromal components will help identify areas for therapeutic intervention. Previous findings have suggested that ex-vivo expanded bone marrow-derived MSC home to the sites of tumor development, responding to inflammatory signals and can serve as effective drug delivery vehicles. Therefore, we first sought to fully assess conditions under which MSC migrate to and incorporate into inflammatory microenvironments and the consequences of modulated inflammation. MSC delivered to animals bearing inflammatory insults were monitored by bioluminescence imaging and displayed specific tropism and selective incorporation into all tumor and wound sites. These findings were consistent across routes of tumor establishment, MSC administration, and immunocompetence. MSC were then used as drug delivery vehicles, transporting Interferon β to sites of pancreatic tumors. This therapy was effective at inhibiting pancreatic tumor growth under homeostatic conditions, but inhibition was lost when inflammation was decreased with CDDO-Me combination treatment. Next, to examine the endogenous tumor microenvironment, a series of tissue transplant experiments were carried out in which tissues were genetically labeled and engrafted in recipients prior to tumor establishment. Tumors were then analyzed for markers of tumor associated fibroblasts (TAF): α-smooth muscle actin (α-SMA), nerve glia antigen 2 (NG2), fibroblast activation protein (FAP), and fibroblast specific protein (FSP) as well as endothelial marker CD31 and macrophage marker F4/80. We determined the majority of α-SMA+, NG2+ and CD31+ cells were non-bone marrow derived, while most FAP+, FSP+, and F4/80+ cells were recruited from the bone marrow. In accord, transplants of prospectively isolated BM MSC prior to tumor development indicated that these cells were recruited to the tumor microenvironment and co-expressed FAP and FSP. In contrast, fat transplant experiments revealed recruited fat derived cells co-expressed α-SMA, NG2, and CD31. These results indicate TAF are a heterogeneous population composed of subpopulations with distinct tissues of origin. These models have provided a platform upon which further investigation into tumor microenvironment composition and tests for candidate drugs can be performed. ^
Resumo:
Activation of Rho family small G proteins is thought to be a critical event in breast cancer development and metastatic progression. Rho protein activation is stimulated by a family of enzymes known as guanine nucleotide exchange factors (Rho GEFs). The neuroepithelioma transforming gene 1 (Net1) is a Rho GEF specific for the RhoA subfamily that is overexpressed in primary breast tumors and breast cancer cell lines. Net1 isoform expression is also required for migration and invasion of breast cancer cells in vitro. These data indicate that Net1 may be a critical regulator of metastatic progression in breast cancer. Net1 activity is negatively regulated by sequestration in the nucleus, and relocalization of Net1 outside the nucleus is required to stimulate RhoA activation, actin cytoskeletal reorganization, and oncogenic transformation. However, regulatory mechanisms controlling the extranuclear localization of Net1 have not been identified. In this study, we have addressed the regulation of Net1A isoform localization by Rac1. Specifically, co-expression of constitutively active Rac1 with Net1A stimulates the relocalization of Net1A from the nucleus to the plasma membrane in breast cancer cells, and results in Net1A activation. Importantly, Net1A localization is also driven by endogenous Rac1 activity. Net1A relocalizes outside the nucleus in cells spreading on collagen, and when endogenous Rac1 expression was silenced by siRNA, Net1A remained nuclear in spreading cells. These data indicate that Rac1 controls the localization of the Net1A isoform and suggests a physiological role for Net1A in breast cancer cell adhesion and motility.
Resumo:
Thoracic Aortic Aneurysms and Dissections (TAAD) are the fifteenth leading cause of death in the United States. About 15% of TAAD patients have family history of the disease. The most commonly mutated gene in these families is ACTA2, encoding smooth muscle-specific α-actin. ACTA2 missense mutations predispose individuals both to TAAD and to vascular occlusive disease of small, muscular arteries. Mice carrying an Acta2 R258C mutant transgene with a wildtype Acta2 promoter were generated and bred with Acta2-/- mice to decrease the wildtype: mutant Acta2 ratio. Acta2+/+ R258C TGmice have decreased aortic contractility without aortic disease. Acta2+/- R258C TG mice, however, have significant aortic dilatations by 12 weeks of age and a hyperproliferative response to injury. We characterized smooth muscle cells (SMCs) from bothmouse models under the hypothesis that mutant α-actin has a dominant negative effect, leading to impaired contractile filament formation/stability, improper focal adhesion maturation and increased proliferation. Explanted aortic SMCs from Acta2+/+ R258C TG mice are differentiated - they form intact filaments, express higher levels of contractile markers compared to wildtype SMCs and have predominantly nuclear Myocardin-Related Transcription Factor A (MRTF-A) localization. However, ultracentrifugation assays showed large unpolymerized actin fractions, suggesting that the filaments are brittle. In contrast, Acta2+/- R258C TG SMCs are less well-differentiated, with pools of unpolymerized actin, more cytoplasmic MRTF-A and decreased contractile protein expression compared to wildtype cells. Ultracentrifugation assays after treating Acta2+/- R258C TGSMCs with phalloidin showed actin filament fractions, indicating that mutant α-actin can polymerize into filaments. Both Acta2+/+ R258C TGand Acta2+/- R258C TGSMCs have larger and more peripheral focal adhesions compared to wildtype SMCs. Rac1 was more activated in Acta2+/+ R258C TGSMCs; both Rac1 and RhoA were less activated in Acta2+/- R258C TG SMCs, and FAK was more activated in both transgenic SMC lines compared to wildtype. Proliferation in both cell lines was significantly increased compared to wildtype cells and could be partially attenuated by inhibition of FAK or PDGFRβ. These data support a dominant negative effect of the Acta2 R258C mutation on the SMC phenotype, with increasing phenotypic severity when wildtype: mutant α-actin levels are decreased.
Resumo:
Traumatic brain injury (TBI) often results in disruption of the blood brain barrier (BBB), which is an integral component to maintaining the central nervous system homeostasis. Recently cytosolic calcium levels ([Ca2+]i), observed to elevate following TBI, have been shown to influence endothelial barrier integrity. However, the mechanism by which TBI-induced calcium signaling alters the endothelial barrier remains unknown. In the present study, an in vitro BBB model was utilized to address this issue. Exposure of cells to biaxial mechanical stretch, in the range expected for TBI, resulted in a rapid cytosolic calcium increase. Modulation of intracellular and extracellular Ca2+ reservoirs indicated that Ca2+ influx is the major contributor for the [Ca2+]i elevation. Application of pharmacological inhibitors was used to identify the calcium-permeable channels involved in the stretch-induced Ca2+ influx. Antagonist of transient receptor potential (TRP) channel subfamilies, TRPC and TRPP, demonstrated a reduction of the stretch-induced Ca2+ influx. RNA silencing directed at individual TRP channel subtypes revealed that TRPC1 and TRPP2 largely mediate the stretch-induced Ca2+ response. In addition, we found that nitric oxide (NO) levels increased as a result of mechanical stretch, and that inhibition of TRPC1 and TRPP2 abolished the elevated NO synthesis. Further, as myosin light chain (MLC) phosphorylation and actin cytoskeleton rearrangement are correlated with endothelial barrier disruption, we investigated the effect mechanical stretch had on the myosin-actin cytoskeleton. We found that phosphorylated MLC was increased significantly by 10 minutes post-stretch, and that inhibition of TRP channel activity or NO synthesis both abolished this effect. In addition, actin stress fibers formation significantly increased 2 minutes post-stretch, and was abolished by treatment with TRP channel inhibitors. These results suggest that, in brain endothelial cells, TRPC1 and TRPP2 are activated by TBI-mechanical stress and initiate actin-myosin contraction, which may lead to disruption of the BBB.
Resumo:
Adherens junctions (AJs) and basolateral modules are important for the establishment and maintenance of apico-basal polarity. Loss of AJs and basolateral module members lead to tumor formation, as well as poor prognosis for metastasis. Recently, in mammalian studies it has been shown that loss of either AJ or basolateral module members deregulate Yorkie activity, the downstream transcriptional effector of the Hippo pathway. Importantly, it is unclear if AJ and basolateral components act through the same or parallel mechanisms to regulate Yorkie activity. Here, we dissect how loss of AJ and basolateral components affects Hippo signaling in Drosophila. Surprisingly, while scrib knock-down tissue displays increased reporter activity autonomously, α-cat knock-down tissue shows a cell autonomous decrease and a cell non-autonomous increase of Hippo reporter activity. We provided several lines of evidence to show the differential regulation in polarity protein localizations and oncogenic cooperative overgrowth by AJs and basolateral complexes. Finally, we show that Hippo pathway activity is induced in α-cat and scrib double knocked-down tissue. Taken together, our results provide evidence to show that basolateral modules and AJs act in parallel to modulate Hippo pathway activity. Non-muscle myosin II is an actomyosin component that interacts with the actin. Non-muscle myosin II also interacts with lgl, though the function of this interaction is not clear. Our lab demonstrated that modulating F-actin regulates Hippo pathway activity, and lgl also has been described as a Hippo pathway regulator. Therefore we suspect that myosin II is also involved in Hippo pathway regulation. We first characterized non-muscle Myosin II as a novel tumor suppressor gene by affecting Hippo pathway activity. Upstream regulators of Myosin II, members in the Rho signaling pathway, also displayed similar phenotypes as the Myosin II knock-down tissues. Apoptosis is also induced in myosin II knock-down tissues, however, blocking cell death does not affect myosin II knock-down induced Hippo activation. Our data suggested hyperactivating myosin II induced F-actin accumulation so therefore induces Hippo target activation. Unexpectedly, we also observed that reducing F-actin activity induced Hippo target activation in vivo. These controversial data indicated that actomyosin may regulate the Hippo pathway through multiple mechanisms.
Resumo:
Injury is an inevitable part of life, making wound healing essential for survival. In postembryonic skin, wound closure requires that epidermal cells recognize the presence of a gap and change their behavior to migrate across it. In Drosophila larvae, wound closure requires two signaling pathways (the Jun N-terminal kinase (JNK) pathway and the Pvr receptor tyrosine kinase signaling pathway) and regulation of the actin cytoskeleton. In this and other systems, it remains unclear how the signaling pathways that initiate wound closure connect to the actin regulators that help execute wound- induced cell migrations. Here we show that chickadee, which encodes the Drosophila Profilin, a protein important for actin filament recycling and cell migration during development, is required for the physiological process of larval epidermal wound closure. After injury, chickadee is transcriptionally upregulated in cells proximal to the wound. We found that JNK, but not Pvr, mediates the increase in chic transcription through the Jun and Fos transcription factors. Finally, we show that chic deficient larvae fail to form a robust actin cable along the wound edge and also fail to form normal filopodial and lamellipodial extensions into the wound gap. Our results thus connect a factor that regulates actin monomer recycling to the JNK signaling pathway during wound closure. They also reveal a physiological function for an important developmental regulator of actin and begin to tease out the logic of how the wound repair response is organized.
Resumo:
Signal transduction pathways operative in lymphokine activated killer (LAK) cells during execution of cytolytic function have never been characterized. Based on ubiquitous involvement of protein phosphorylation in activation of cytolytic mechanisms used by CTL and NK cells, it was hypothesized that changes in protein phosphorylation should occur when LAK encounter tumor targets. It was further hypothesized that protein kinases would regulate LAK-mediated cytotoxicity. Exposure to either SK-Mel-1 (melanoma) or Raji (lymphoma) targets consistently led to increased phosphorylation of two 65-kD LAK proteins pp65a and -b, with isoelectric points (pI) of 5.1 and 5.2 respectively. Increased p65 phosphorylation was initiated between 1 and 5 min after tumor coincubation, occurred on Ser residues, required physical contact between LAK and tumors, correlated with target recognition, and also occurred after crosslinking Fc$\gamma$RIIIA in the absence of tumors. Both pp65a and -b were tentatively identified as phosphorylated forms of the actin-bundling protein L-plastin, based on pI, molecular weight, and cross-reactivity with specific antiserum. The known biochemical properties of L-plastin suggest it may be involved in regulating adhesion of LAK to tumor targets. The protein tyrosine kinase-specific inhibitor Herb A did not block p65 phosphorylation, but blocked LAK killing of multiple tumor targets at a post-binding stage. Greater than 50% inhibition of cytotoxicity was observed after a 2.5-h pretreatment with 0.125 $\mu$g/ml Herb A. Inhibition occurred over a period in pretreatment which LAK were not dependent upon IL-2 for maintenance of killing activity, supporting the conclusion that the drug interfered with mobilization of cytotoxic function. Granule exocytosis measured by BLT-esterase release from LAK occurred after coincubation with tumors, and was inhibited by Herb A LAK cytotoxicity was dependent upon extracellular calcium, suggesting that granule exocytosis rather than Fas ligand was the principal pathway leading to target cell death. The data indicate that protein tyrosine kinases play a pivotal role in LAK cytolytic function by regulating granule exocytosis, and that tumor targets can activate an adhesion dependent Ser kinase pathway in LAK resulting in phosphorylation of L-plastin. ^
Resumo:
Cardiovascular disease (CVD) is the leading cause of death in the United States. One manifestation of CVD known to increase mortality is an enlarged, or hypertrophic heart. Hypertrophic cardiomyocytes adapt to increased contractile demand at the genetic level with a re-emergence of the fetal gene program and a downregulation of fatty acid oxidation genes with concomitant increased reliance on glucose-based metabolism. To understand the transcriptional regulatory pathways that implement hypertrophic directives we analyzed the upstream promoter region of the muscle specific isoform of the nuclear-encoded mitochondrial gene, carnitine palmitoyltransferase-1β (CPT-1β) in cultured rat neonatal cardiac myocytes. This enzyme catalyzes the rate-limiting step of fatty acid entry into β-oxidation and is downregulated in cardiac hypertrophy and failure, making it an attractive model for the study of hypertrophic gene regulation and metabolic adaptations. We demonstrate that the muscle-enriched transcription factors GATA-4 and SRF synergistically activate CPT-1β; moreover, DNA binding to cognate sites and intact protein structure are required. This mechanism coordinates upregulation of energy generating processes with activation of the energy consuming contractile promoter for cardiac α-actin. We hypothesized that fatty acid or glucose responsive transcription factors may also regulate CPT-1β. Oleate weakly stimulates CPT-1β activity; in contrast, the glucose responsive Upstream Stimulatory Factors (USF) dramatically depresses the CPT-1β reporter. USF regulates CPT-1β through a novel physical interaction with the cofactor PGC-1 and abrogation of MEF2A/PGC-1 synergistic stimulation. In this way, USF can inversely regulate metabolic gene programs and may play a role in the shift of metabolic substrate preference seen in hypertrophy. Failing hearts have elevated expression of the nuclear hormone receptor COUP-TF. We report that COUP-TF significantly suppresses reporter transcription independent of DNA binding and specific interactions with GATA-4, Nkx2.5 or USF. In summary, CPT-1β transcriptional regulation integrates mitochondrial gene expression with two essential cardiac functions: contraction and metabolic substrate oxidation. ^
Resumo:
The essential p21-activated kinase (PAK), Shk1, is a critical component of a Ras/Cdc42/PAK complex required for cell viability, normal cell polarity, proper regulation of cytoskeletal dynamics, and sexual differentiation in the fission yeast, Schizosaccharomyces pombe. While cellular functions of PAKs have been described in eukaryotes from yeasts to mammals, the molecular mechanisms of PAK regulation and function are poorly understood. This study has characterized a novel Shk1 inhibitor, Skb15, and, in addition, identified the cell polarity regulator, Tea1, as a potential biological substrate of Shk1 in S. pombe. Skb15 is a highly conserved WD repeat protein that was discovered from a two-hybrid screen for proteins that interact with the catalytic domain of Shk1. Molecular data indicate that Skb15 negatively regulates Shk1 kinase activity in S. pombe cells. A null mutation in the skb15 gene is lethal and results in deregulation of actin polymerization and localization, microtubule biogenesis, and the cytokinetic machinery, as well as a substantial uncoupling of these processes from the cell cycle. Loss of Skb15 function is suppressed by partial loss of Shk1, demonstrating that negative regulation of Shk1 by Skb15 is required for proper execution of cytoskeletal remodeling and cytokinetic functions. A mouse homolog of Skb15 can substitute for its counterpart in fission yeast, demonstrating that Skb15 protein function has been substantially conserved through evolution. ^ Our laboratory has recently demonstrated that Shk1, in addition to regulating actin cytoskeletal organization, is required for proper regulation of microtubule dynamics in S. pombe cells. The Shk1 protein localizes to interphase and mitotic microtubules, the septum-forming region, and cell ends. This pattern of localization overlaps with that of the cell polarity regulator, Tea1, in S. pombe cells. The tea1 gene was identified by Paul Nurse's laboratory from a screen for genes involved in the control of cell morphogenesis in S. pombe. In contrast to wild type S. pombe cells, which are rod shaped, tea1 null cells are often bent and/or branched in shape. The Tea1 protein localizes to the cell ends, like Shk1, and the growing tips of interphase microtubules. Thus, experiments were performed to investigate whether Tea1 interacts with Shk1. The tea1 null mutation strongly suppresses the loss of function of Skb15, an essential inhibitor of Shk1 function. All defects associated with the skb15 mutation, including defects in F-actin organization, septation, spindle elongation, and chromosome segregation, are suppressed by tea1Δ, suggesting that Tea1 may function in these diverse processes. Consistent with a role for Tea1 in cytokinesis, tea1Δ cells have a modest cell separation defect that is greatly exacerbated by a shk1 mutation and, like Shk1, Tea1 localizes to the septation site. Molecular analyses showed that Tea1 phosphorylation is significantly dependent on Shk1 function in vivo and that bacterially expressed Tea1 protein is directly phosphorylated by recombinant Shk1 kinase in vitro. Taken together, these results identify Tea1 as a potential biological substrate of Shk1 in S. pombe. ^ In summary, this study provides new insights into a conserved regulatory mechanism for PAKs, and also begins to uncover the molecular mechanisms by which the Ras/Cdc42/PAK complex regulates the microtubule and actin cytoskeletons and cell growth polarization in fission yeast. ^