650 resultados para Biology, Biostatistics|Health Sciences, Nutrition|Health Sciences, Epidemiology|Health Sciences, Oncology
Resumo:
Cutaneous exposure to ultraviolet-B radiation (UVR) results in the suppression of cell-mediated immune responses such as contact hypersensitivity (CHS) and delayed-type hypersensitivity (DTH). This modulation of immune responses is mediated by local or systemic mechanisms, both of which are associated with the generation of antigen-specific suppressor T lymphocytes (Ts). UV-induced Ts have been shown to be CD3+CD4+CD8 − T cells that control multiple immunological pathways. However, the precise mechanisms involved in the generation and function of these immunoregulatory cells remain unclear. We investigated the cellular basis for the generation of UV-induced Ts lymphocytes in both local and systemic models of immune suppression, and further examined the pleiotrophic function of these immunoregulatory cells. ^ We used Thy1.1 and Thy1.2 congenic mice in a draining lymph node (DLN) cell transfer model to analyze the role played by epidermal Langerhans cells in the generation of Ts cells. We demonstrate that T cells tightly adhered to antigen-presenting cells (APC) from UV-irradiated skin are the direct progenitors of UV-induced Ts lymphocytes. Our studies also reveal that UV-induced DNA-damage in the form of cyclobutyl pyrimidine dimers (CPD) in the epidermal APC is crucial for the altered maturation of these adherent T cells into Ts. ^ We used TCR transgenic mice in an adoptive transfer model and physically tracked the antigen-specific clones during immune responses in unirradiated versus UV-irradiated mice. We demonstrate that UV-induced Ts and effector TDTH cells share the same epitope specificity, indicating that both cell populations arise from the same clonal progenitors. UVR also causes profound changes in the localization and proliferation of antigen-specific T cells during an immune response. Antigen-specific T cells are not detectable in the DLNs of UV-irradiated mice after 3 days post-immunization, but are found in abundance in the spleen. In contrast, these clones continue to be found in the DLNs and spleens of normal animals several days post-immunization. Our studies also reveal that a Th2 cytokine environment is essential for the generation of Ts in UV-irradiated mice. ^ The third part of our study examined the pleiotrophic nature of UV-induced Ts. We used a model for the induction of both cellular and humoral responses to human gamma-globulin (HGG) to demonstrate that UV-induced Ts lymphocytes can suppress DTH as well as antibody responses. (Abstract shortened by UMI.) ^
Resumo:
SHP1 is a cytosolic protein tyrosine phosphatase that contains two SH2 domains. It is highly expressed in hematopoietic cells and expressed in normal epithelium at lower levels. While SHP1 in hematopoietic cells is thought to be a negative regulator of cellular signaling by associating with and dephosphorylating various receptors and their downstream effectors after they become activated, its precise function in epithelium remains to be understood. The potential involvement of SHP1 in human tumorigenesis has been hypothesized from the findings that SHP1 can interact with, dephosphorylate, and regulate the activity of several protein tyrosine kinases (PTKs) implicated in human cancer. These PTKs include epidermal growth factor receptor (EGFR) and Src. Such speculation is also supported by the report that SHP1 is overexpressed in human ovarian cancers. ^ Here we report, for the first time, that the levels of SHP1 expression and activity are altered in human breast cancer cells in comparison with normal breast epithelium. In particular, SHP1 expression is nearly lost in the breast cancer cell lines MDA-MB231 and MDA-MB435. After the re-introduction of SHP1 both in wild type (wt) and enzymatically inactive (dn) forms, into the MDA-MB231 cells, we observed no changes in cellular proliferation. However, the overexpression of wt SHP1 led to increased anchorage-independent growth in the MDA-MB231 cells. SHP1 phosphatase activity is essential for such an increase since the overexpression of dn SHP1 had no effect. Enhanced turnorigenicity in nude mice was also observed in the MDA-MB231 cells overexpressing wt SHP1, but not dn SHP1, suggesting the crucial function of SHP1 enzymatic activity in this process. Our observations in this study indicate that SHP1 promotes tumorigenesis by a mechanism or mechanisms apart from enchancing angiogenesis. In addition, we have found no evidence that the overexpression of SHP1 could affect metastatic potential in the MDA-MB231 cells. ^ In the MDA-MB231 cells stably transfected with either wt or dn SHP1 the peak level of EGFR tyrosine phosphorylation induced by EGF, as well as the sensitivity to EGF stimulation, was not altered. However, the overexpression of wt SHP1 led to a slight increase in the kinetics of EGFR dephosphorylation, whereas the overexpression of dn SHP1 led to slightly delayed kinetics of EGFR dephosphorylation. The overexpression of either the wt or dn SHP1 did not lead to any significant increase in Src kinase activity. ^ In NIH3T3 cells, the transient overexpression of SHP1 led to no significant changes in MAP kinase (ERK2) activation by EGF or Akt activation by PDGF. In 3T3H4 cells, the transient overexpression of SHP1 led to no significant changes in MAP kinase (ERK2) activation by heregulin. The transient overexpression of wt SHP1 in the MDA-MB231 cells caused an apparent increase, ranging from 10% to 20%, in the G0/G1 population of the cells with a corresponding decrease in the S phase population. ^ In order to understand the mechanisms by which SHP1 exerts its positive effect on the tumorigenic potential of the MDA-MB231 cells, we employed two-dimensional electrophoresis in an attempt to identify cellular protein(s) with significantly altered tyrosine phosphorylation level upon wt SHP1 overexpression. The overexpression of wt SHP1 but not dn SHP1, leads increased tyrosine phosphorylation of a protein with a molecular weight of approximately 40 kDa and a pI between 5.9 to 6.6. ^
Resumo:
Regulation of cytoplasmic deadenylation, the first step in mRNA turnover, has direct impact on the fate of gene expression. AU-rich elements (AREs) found in the 3′ untranslated regions of many labile mRNAs are the most common RNA-destabilizing elements known in mammalian cells. Based on their sequence features and functional properties, AREs can be divided into three classes. Class I or class III ARE directs synchronous deadenylation, whereas class II ARE directs asynchronous deadenylation with the formation of poly(A)-intermediates. Through systematic mutagenesis study, we found that a cluster of five or six copies of AUUUA motifs forming various degrees of reiteration is the key feature dictating the choice between asynchronous versus synchronous deadenylation. A 20–30 nt AU-rich sequence immediately 5 ′ to this cluster of AUUUA motifs can greatly enhance its destabilizing ability and is an integral part of the AREs. These two features are the defining characteristics of class II AREs. ^ To better understand the decay mechanism of AREs, current methods have several limitations. Taking the advantage of tetracycline-regulated promoter, we developed a new transcriptional pulse strategy, Tet-system. By controlling the time and the amount of Tet addition, a pulse of RNA could be generated. Using this new system, we showed that AREs function in both growth- and density-arrested cells. The new strategy offers for the first time an opportunity to investigate control of mRNA deadenylation and decay kinetics in mammalian cells that exhibit physiologically relevant conditions. ^ As a member of heterogeneous nuclear RNA-binding protein, hnRNP D 0/AUF1 displays specific affinities for ARE sequences in vitro . But its in vivo function in ARE-mediated mRNA decay is unclear. AUF1/hnRNP D0 is composed of at least four isoforms derived by alternative RNA splicing. Each isoform exhibits different affinity for ARE sequence in vitro. Here, we examined in vivo effect of AUF1s/hnRNP D0s on degradation of ARE-containing mRNA. Our results showed that all four isoforms exhibit various RNA stabilizing effects in NIH3T3 cells, which are positively correlated with their binding affinities for ARE sequences. Further experiments indicated that AUF1/hnRNP D0 has a general role in modulating the stability of cytoplasmic mRNAs in mammalian cells. ^
Resumo:
p53 is required for the maintenance of the genomic stability of cells. Mutations in the p53 tumor-suppressor gene occur in more than 50% of human cancers of diverse types. In addition, 70% of families with Li-Fraumeni syndrome have a germline mutation in p53, predisposing these individuals to multiple forms of cancer. In response to DNA damage, p53 becomes stabilized and activated. However the exact mechanism by which DNA damage signals the stabilization and activation of p53 still remains elusive. The biochemical activity of p53 that is required for tumor suppression, and presumably the cellular response to DNA damage, involves the ability of the protein to bind to specific DNA sequences and to function as a transcription factor. For the downstream targets, p53 transactivates many genes involved in growth arrest, apoptosis and DNA repair such as p21, Bax and GADD45, respectively. An open question in the field is how cells can determine the downstream effects of p53. ^ We hypothesize that, through its associated proteins, p53 can differentially transactivate its target genes, which determine its downstream effect. Additionally, p53 interacting proteins may be involved in signaling for the stabilization and activation of p53. Therefore, a key aspect to understanding p53 function is the identification and analysis of proteins that interact with it. We have employed the Sos recruitment system (SRS), a cytoplasmic yeast two-hybrid screen to identify p53 interacting proteins. The SRS is based on the ability of Sos to activate Ras when it becomes localized to the plasma membrane. The system takes advantage of an S. cerevisiae strain, cdc25-2 temperature sensitive mutant, harboring a mutation in Sos. In this strain, fusion proteins containing a truncated Sos will only localize to the membrane by protein-protein interaction, which allows growth at non-permissive temperature. This system allows the use of intact transcriptional activators such as p53. ^ To date, using a modified SRS library screen to identify p53 interacting proteins, I have identified p53 (known to interact with itself) and a novel p53-interacting protein (PIP). PIP is a specific p53 interacting protein in the SRS. The interaction of p53 and PIP was further confirmed by performing in vitro and in vivo binding assays. In the in vivo binding study, the interaction can only be detected in the presence of ionizing radiation suggesting that this interaction might be involved in DNA-damage induced p53-signalling pathway. After screening cDNA and genomic libraries, a full-length PIP-cDNA clone ( ∼ 3kb) was obtained which encodes a protein of 429 amino acids with calculated molecular weight of 46 kDa. The results of genebank search indicated that the PIP is an unidentified gene and contains a conserved ring-finger domain, which is present in a diverse family of regulatory proteins involved in different aspects of cellular function. Northern blot analysis revealed that the size of its messenge is approximately 3 kb preferentially expressed in brain, heart, liver and kidney. The PIP protein is mainly located in the cytoplasm as determined by the cellular localization of a green fluorescence fusion protein. Preliminary functional analysis revealed that PIP downregulated the transactivation activity of p53 on both p21 and mdm2 promoters. Thus, PIP may be a novel negative regulator of p53 subsequent to DNA damage. ^
Resumo:
TNF-α is a pleiotropic cytokine involved in normal homeostasis and plays a key role in defending the host from infection and malignancy. However when deregulated, TNF-α can lead to various disease states. Therefore, understanding the mechanisms by which TNF-α is regulated may aid in its control. In spite of the knowledge gained regarding the transcriptional regulation of TNF-α further characterization of specific TNF-α promoter elements remains to be elucidated. In particular, the T&barbelow;NF-α A&barbelow;P-1/C&barbelow;RE-like (TAC) element of the TNF-α promoter has been shown to be important in the regulation of TNF-α in lymphocytes. Activating transcription factor-2 (ATF-2) and c-Jun were shown to bind to and transactivate the TAC element However, the role of TAC and transcription factors ATF-2 and c-Jun in the regulation of TNF-α in monocytes is not as well characterized. Lipopolysaccharide (LPS), a potent activator of TNF-α in monocytes, provides a good model to study the involvement of TAC in TNF-α regulation. On the other hand, all-tram retinoic acid (ATRA), a physiological monocyte-differentiation agent, is unable to induce TNF-α protein release. ^ To delineate the functional role of TAC, we transfected the wildtype or the TAC deleted TNF-α promoter-CAT construct into THP-1 promonocytic cells before stimulating them with LPS. CAT activity was induced 17-fold with the wildtype TNF-α promoter, whereas the CAT activity was uninducible when the TAC deletion mutant was used. This daft suggests that TAC is vital for LPS to activate the TNF-α promoter. Electrophoretic mobility shift assays using the TAC element as a probe showed a unique pattern for LPS-activated cells: the disappearance of the upper band of a doublet seen in untreated and ATRA treated cells. Supershift analysis identified c-Jun and ATF-2 as components of the LPS-stimulated binding complex. Transient transfection studies using dominant negative mutants of JNK, c-Jun, or ATF-2 suggest that these proteins we important for LPS to activate the TNF-α promoter. Furthermore, an increase in phosphorylated or activated c-Jun was bound to the TAC element in LPS-stimulated cells. Increased c-Jun activation was correlated with increased activity of Jun N-terminal kinase (JNK), a known upstream stimulator of c-Jun and ATF-2, in LPS-stimulated monocytes. On the other hand, ATRA did not induce TNF-α protein release nor changes in the phosphorylation of c-Jun or JNK activity, suggesting that pathways leading to ATRA differentiation of monocytic cells are independent of TNF-α activation. Together, the induction of TNF-α gene expression seems to require JNK activation, and activated c-Jun binding to the TAC element of the TNF-α promoter in THP-1 promonocytic cells. ^
Resumo:
Several studies indicate that interleukin-6 (IL-6) production is elevated in renal cell carcinoma (RCC) cells, and that IL-6 can serve as an autocrine growth factor in this malignancy. Wild type (wt) p53 represses transcription from the IL-6 promoter in an inducible system. The objective of this study was to determine the role of p53 in regulating constitutive IL-6 production in RCC cells. RCC cell lines containing mutant (mut) p53 produced significantly higher levels of IL-6 than those containing wt p53 (p < 0.05). Transfection of wt p53 into RCC cell lines resulted in significant repression of IL-6 promoter CAT activity p < 0.05). Mutant p53 was less effective at repressing IL-6 promoter activity in ACHN cells, and actually enhanced IL-6 promoter activity in the A498 cell line. A498 cells stably transfected with mutant p53 produced significantly higher levels of IL-6 than A498 cells transfected with an empty expression vector (p < 0.05). Electrophoretic mobility shift assay showed a significant decrease in binding of C/EBP, CREB, and NF-kB transcription factors to the IL-6 promoter in A498 cells transfected with wt p53. Mut p53 was unable to inhibit transcription factor binding to the IL-6 promoter in these cells. Mutant p53-expressing UOK 121LN cells showed decreased binding of C/EBP and CREB, but not NF-kB, following wt p53 transfection. These data suggest that (i) mutation of p53 contributes to the over-expression of IL-6 in RCC; and (ii) wt p53 represses IL-6 expression at least in part by interfering with the binding of C/EBP, CREB, and in some cases, NF-kB transcription factors to the IL-6 promoter. ^
Resumo:
Carcinoma of the skin is the most common type of human cancer in the United States. Ultraviolet radiation (UVR) present in the sunlight is thought to be the major carcinogen responsible for induction of skin cancer. In UV-associated skin carcinogenesis, mutations in p53 are not only present with very high frequency, but occur early in the course of tumor development. In addition, UV-induced skin tumors in mice exhibit unique immunological characteristics. They are highly antigenic and express both individually-specific tumor transplantation antigens recognized by effector T cells and the UV-associated common antigen recognized by UV-induced suppressor T cells. ^ To examine the hypothesis that p53 plays a critical role in preventing skin cancer induction by UVR, mice constitutively lacking one or two functional p53 alleles were compared to wild-type mice for their susceptibility to UV carcinogenesis. Both p53 +/– and –/– mice showed greater susceptibility to skin cancer induction than wild-type mice, and –/– mice were the most susceptible, Accelerated tumor development in the p53 +/– mice was not associated with loss of the remaining wild-type allele of p53 , but in many cases was associated with UV-induced mutations in p53. Our studies clearly demonstrate the essential role of p53 in protection against UV carcinogenesis, particularly in the eye and epidermis. ^ The role of p53 in the antigenicity of UV-induced murine skin tumors was also addressed. Primary UV-induced tumors from p53 –/–, +/– and +/+ mice were transplanted into both normal and immunosuppressed mice, and rates of tumor rejection were compared. Tumors from mice with only one or no functional p53 alleles were less antigenic than those from mice with two functional p53 alleles. Moreover, tumors with no functional p53 also failed to grow well in chronically UV-irradiated mice. These results indicate that p53 contributes to the strong antigenicity of UV-induced murine skin tumors, and suggest that it may play a critical role in expression of the UV-associated common antigen recognized by suppressor T cells. ^ In this study we also monitored the effect of UVR on the development of lymphoid malignancies in p53 deficient mice. The incidence of lymphoid malignancies in UV-irradiated p53 +/– mice was drastically enhanced compared to that in unirradiated counterparts. The immune responses of the mice were identical and were suppressed to the same extent by UV irradiation regardless of the p53 genotype. These data provide the first experimental evidence that exposure to UVR can contribute to the development of lymphoid neoplasms in genetically susceptible hosts. ^
Resumo:
The adenovirus type 5 E1A (abbreviated E1A) has previously been known as an immortalization oncogene because E1A is required for transforming oncogenes, such as ras and E1B, to transform cells in primary cultures. However, E1A has also been shown to downregulate the overexpression of the Her-2/neu oncogene, resulting in suppression of transformation and tumorigenesis induced by that oncogene. In addition, E1A is able to promote apoptosis induced by anticancer drugs, irradiation, and serum deprivation. Many tyrosine kinases, such as the EGF receptor, Her-2/Neu, Src, and Axl are known to play a role in oncogenic signals in transformed cells. To study the mechanism underlying the E1A-mediated tumor-suppressing function, we exploited a modified tyrosine kinase profile assay (Proc. Natl. Acad. Sci, 93, 5958–5962, 1996) to identify potential tyrosine kinases regulated by E1A. RT-PCR products were synthesized with two degenerate primers derived from the conserved motifs of various tyrosine kinases. A tyrosine kinase downregulated by E1A was identified as Axl by analyzing the Alu I-digested RT-PCR products. We isolated the DNA fragment of interest, and found that E1A negatively regulated the expression of the transforming receptor tyrosine kinase Axl at the transcriptional level. To study whether downregulation of the Axl receptor is involved in E1A-mediated growth suppression, we transfected axl cDNA into E1A-expressing cells (ip1-E1A) to establish cells that overexpressed Axl (ip1-E1A-Axl). The Axl ligand Gas6 triggered a greater mitogenic effect in these ip1-E1A-Axl cells than in the control cells ip1-E1A and protected the Axl-expressing cells from serum deprivation-induced apoptosis. Further study showed that Akt is required for Axl-Gas6 signaling to prevent ip1-E1A-Axl cells from serum deprivation-induced apoptosis. These results indicate that downregulation of the Axl receptor by E1A is involved in E1A-mediated growth suppression and E1A-induced apoptosis, and thereby contributes to E1A's anti-tumor activities. ^
Resumo:
Multiple sclerosis (MS) is the most common autoimmune disease of the central nerve system and Guillain Barré Syndrome (GBS) is an inflammatory neuropathy involving the peripheral nerves. Anti-myelin immunoglobins may play a role in the demyelination processes of the both diseases. Sulfatide is an abundant glycolipid on myelin and is a candidate target antigen for disease related autoantibodies. The objective of this study was to characterize anti-sulfatide antibodies and compare antibodies from GBS and MS patients with fetal antibodies. Our hypothesis is that some B cells producing disease-associated autoantibodies are derived from or related to B cells of the fetal repertoire. Here we report that reactivity of plasma IgM against sulfatide was elevated in twelve MS patients compared with twelve normal subjects. This result implies that anti-sulfatide antibodies are disease-related. A total of sixteen human B lymphocyte clones producing anti-sulfatide autoantibodies were isolated from MS patients, GBS patients and a human fetus. Seven of the clones were from three MS patients, four of the clones were from three GBS patients and five were from the spleen of a twenty-week human fetus. Sequences have been obtained for the heavy and light chain variable regions (VDJ and VJ regions) of all of the anti-sulfatide immunoglobulins. Seven of the sixteen antibodies used VH3 for the variable region gene of the heavy chain consistent with the rate of VH3 usage in randomly selected B cells. Somatic mutations were significantly more frequent in the patient antibodies than in the fetus and somatic mutations in CDR's (Complementarity Determining Region) were significantly more frequent than in framework regions. No significant difference was found between patients and fetus in length of VH CDRIII. However, it is reported that antibodies from randomly selected normal adult B cells have longer CDRIII lengths than those of the fetus (Sanz I, 1991 Journal of Immunology Sep 1;147(5):1720-9). Our results are consistent with derivation of the precursors of B cells producing these autoantibodies from B cells related to those of the fetal repertoire. These findings are consistent with a model in which quiescent B cells from clones produced early in development undergo proliferation in dysregulated disease states, accumulating somatic mutations and increasing in reactivity toward self-antigens. ^ Epitope mapping and molecular modeling were done to elucidate the relationships between antibody structure and binding characteristics. The autoantibodies were tested for binding activity to three different antigens: sulfatide, galactoceramide and ceramide. Molecular modeling suggests that antibodies with positive charge surrounded by or adjacent to hydrophobic groups in the binding pocket bind to the head of sulfatide via the sulfate group through electrostatic interactions. However, the antibodies with hydrophobic groups separated from positive charges appear to bind to the hydrophobic tail of sulfatide. This observation was supported by a study of the effect of NaCl concentration on antigen binding. The result suggested that electrostatic interactions played a major role in sulfate group binding and that hydrophobic interactions were of greater importance for binding to the ceramide group. Our three-dimensional structure data indicated that epitope specificity of these antibodies is more predictable at the level of tertiary than primary structure and suggested positive selection based on structure occurred in the. formation of those autoantibodies. ^
Resumo:
Overexpression of c-erbB-2 gene-encoded p185 has been correlated with lymph node metastasis and poor prognosis in breast cancer patients. To investigate whether overexpression of c-erbB-2 can enhance metastatic potential of human breast cancer cells, we compared the metastatic phenotypes of the parental MDA-MB-435 cells and the c-erbB-2 gene transfected 435.eB cells. In vivo experimental metastasis assays demonstrated that mice injected erbB2-overexpressing 435.eB transfectants formed significantly more metastatic tumors than the mice injected with parental and control cells. The changes in metastatic potential in vivo were accompanied by increased invasiveness in vitro . The transfectants and the parental cells all had similar growth rates and transformation potential. These findings suggest that c- erbB-2 gene can enhance the intrinsic metastatic potentials of MDA-MB-435 cells without increasing their transformation abilities. ^ Homophilic adhesion may affect invasive and metastatic potential of tumor cells. We found that Heregulin-β1 (HRG-β1), a growth factor that activates receptor kinases erbB3 and erbB4, can enhance aggregation of MCF-7 and SKBR3 human breast cancer cells. While investigating the downstream signals involved in HRG-β1-increased cell aggregation, we observed that HRG-β1 increased the kinase activities of extracellular signal-regulated protein kinase (ERK) and PI3K in these cells. By using different kinase inhibitors, we found that the HRG-β1-activated MEK1-ERK pathway has no demonstrable role in the induction of cell aggregation, whereas HRG-β1-activated PI3K is required for enhancing breast cancer cell aggregation. These results have provided one mechanism by which HRG-β1-activated signaling of erbB receptors may affect invasive/metastatic properties of breast cancer cells. ^ To identify the structural motifs within the erbB2 receptor that are required for erbB2 increased metastatic potential in breast cancer cells, we injected different forms of mutated erbB2 expressing MDA-MB-435 cell line transfectants with or without the EGF-like domain of heregulin-β1 protein (HRG/egf) into ICR-SCID mice to test the metastatic survival rate. The results show that an intact kinase domain of erbB2 receptor is required for erbB2 enhanced metastatic potential in these cells. The C-terminal tyrosine 1248 residue of erbB2 may also play a role in enhancing metastatic potential. Moreover, the results suggest that HRG/egf promote the metastatic potential of human breast cancer cells in vivo. ^
Resumo:
The discovery of expanded simple repeated sequences causing or associated with human disease has lead to a new area of research involved in the elucidation of how the expanded repeat causes disease and how the repeat becomes unstable. ^ To study the genetic basis of the (CTG)n repeat instability in the DMPK gene in myotonic dystrophy (DM1) patients, somatic cell hybrids were constructed between the lymphocytes of DM1 patients and a variety of Chinese hamster ovary (CHO) cell DNA repair gene deficient mutants. By using small pool PCR (SP-PCR), the instability of the (CTG)n can be quantitated for both the frequency and sizes of length change mutations. ^ Additional SP-PCR analysis on 2/11 subclones generated from this original hybrid showed a marked increase in large repeat deletions, ∼50%. A bimodal distribution of repeats was seen around the progenitor allele and at a large deleted product (within the normal range) with no intermediate products present. ^ To determine if the repair capacity of the CHO cell led to a mutator phenotype in the hamster and hybrid clones, SP-PCR was also done on 3 hamster microsatellites in a variety of hamster cell backgrounds. No variant alleles were seen in over 2500 genome equivalents screened. ^ Human-hamster hybrids have long been shown to be chromosomally unstable, yet information about the stability of repeated sequences was not known. To test if repeat instability was associated with either intact or non-intact human chromosomes, more than 300 microsatellite repeats on 13 human chromosomes (intact and non-intact) were analyzed in eight hybrid cells. No variants were seen between the hybrid and patient alleles in the hybrids. ^ To identify whether DM1 patients have a previously undetected level of genome wide instability or if the instability is truly locus specific, SP-PCR was done on 6 human microsatellites within the patient used to make the hybrid cells. No variants were seen in over 1000 genomes screened. ^ These studies show that the somatic cell hybrid approach is a genetically stable system that allows for the determination of factors that could lead to changes in microsatellite instability. It also shows that there is something inherent about the DM1 expanded (CTG)n repeat that it is solely targeted by, as of yet, and unknown mechanism that causes the repeat to be unstable. (Abstract shortened by UMI.)^
Resumo:
Matrix metalloproteinase-9 (MMP-9) plays an important role in tumor invasion and angiogenesis. Secretion of MMP-9 has been reported in various cancer types including lung cancer, brain cancer, colon cancer, and breast cancer. Heregulin is a growth factor that regulates growth and differentiation of normal breast cells as well as mammary tumor cells. To study the role of heregulin in breast cancer metastasis, we tested whether heregulin may regulate MMP-9 secretion. By screening a panel of breast cancer cell line for their ability to respond to heregulin and produce MMP-9, we have found that MMP-9 secretion can be induced by heregulin-β1 in two breast cancer cell lines, SKBr3 and MCF-7. In both cell lines, increase of MMP-9 activity as shown by zymography was accompanied by increased protein level as well as mRNA level of MMP-9. Using a reporter luciferase assay, we have identified that proximal −670bp promoter of MMP-9 had similar activity to a 2.2kb MMP-9 promoter in response to heregulin stimulation. Heregulin treatment of SKBr3 and MCF-7 activated multiple signaling pathways inside cells. These include the Erk pathway, the p38 kinase pathway, PKC pathway, and PI-3K pathway. To examine which pathways are involved in MMP-9 activation by heregulin, we have used a panel of chemical inhibitors to specifically inhibit each one of these pathways. Ro-31-8220 (PKC inhibitor) and SB203580 (p38 kinase inhibitor) completely blocked heregulin activation of MMP-9. On the other hand, PD098059 (MEK-1 inhibitor) partially blocked MMP-9 activation, whereas PI-3K inhibitor, wortmannin, had no effect. Therefore, at least three signaling pathways are involved in activation of MMP-9 by heregulin. Since MMP-9 is tightly associated with metastatic potential, our study also suggests that heregulin may enhance breast tumor metastasis through induction of MMP-9 expression. ^
Resumo:
Phosphatidylinositol 3-kinase (PI3K) phosphorylates membrane constituent phosphatidylinositols, producing second messengers that link membrane bound receptor signals to cellular proliferation and survival. PI3K, a heterodimer consisting of a catalytic p110 subunit and a regulatory p85 subunit, can be activated through induced association with other signaling molecules. The p85 subunit serves to both stabilize and inactivate p110. The inhibitory activity of P85 is relieved by occupancy of the N terminal SH2 domain by phosphorylated tyrosine. PI3K becomes phosphorylated and activated subsequent to a variety of stimuli. Indeed, Src family kinases have been demonstrated to phosphorylate p85 at tyrosine 688, but the role of phosphorylation in PI3K function is unclear. We decided to evaluate the importance of tyrosine phosphorylation to PI3K activity. We demonstrate that tyrosine phosphorylated p85 is associated with a higher specific activity than is non-phosphorylated PI3K. Wild type p85 inhibits PI3K enzyme activity, a process accentuated by mutation of tyrosine 688 to alanine and reversed by mutation to aspartate which functions as a phosphotyrosine mimic in multiple systems. Strikingly, the Y688D mutation completely reverses the p85 inhibitory activity on cell viability and activation of downstream protein NFkB. We demonstrate that tyrosine phosphorylated Y688 or Y688D is sufficient to bind the p85 N terminal SH2 domain, either within full length p85 or in an isolated N terminal SH2 domain, suggesting the possibility of an intramolecular interaction between phosphorylated Y688 and the p85 N terminal SH2 domain that can relieve the p85-induced inhibition of p110. Further, we provide evidence that dephosphorylation of Y688 reduces phosphorylation-induced PI3K activity. We demonstrate that tyrosine phosphatase SHP-1 can physically associate with p85 in a SH2-mediated interaction with the C terminal tail of SHP-1. This association is concomitant with both p85 dephosphorylation and decreased PI3K activity. Altogether, our data suggests the phosphorylation state of p85 is the focal point of a novel mechanism for PI3K activity regulation. As PI3K has been shown to be involved in the vital physiological processes of cell proliferation and apoptosis, a thorough understanding of the regulation of this signaling protein may provide opportunities for the design of novel treatments for cancer. ^
Resumo:
Wilms tumor (WT) or nephroblastoma is a genetically heterogeneous pediatric renal tumor that accounts for 6–7% of all childhood cancers in the U.S. WT1, located at 11p13, is the sole WT gene cloned to date. Additional genomic regions containing genes that play a role in the development of Wilms tumor include 11p15, 7p, 16q, 1p, 17q and 19q. This heterogeneity has made it extremely difficult to develop an understanding of the pathways involved in the development of WT, even in the 5–20% of tumors that show mutations at the WT1 locus. My research addresses this gap in our current comprehension of the development of WT. ^ I have used two complementary approaches to extend the current understanding of molecular changes involved in the development of WT. In order to minimize complexities due to genetic heterogeneity, I confined my analysis to the WT1 pathway by assessing those genetically defined tumors that carry WT1 mutations. WT1 encodes a zinc finger transcription factor, and in vitro studies have identified many genes that are potentially regulated in vivo by WT1. However, there is very little in vivo data that suggests that they are transcriptionally regulated endogenously by WT1. In one approach I assessed the role of WT1 in the in vivo regulation of PDGFA and IGF2, two genes that are strong contenders for endogenous regulation by WT1. Using primary tissue samples, I found no correlation between the level of RNA expression of WT1 with either PDGFA or IGF2, suggesting that WT1 does not play a critical role in their expression in either normal kidney or WT. ^ In a parallel strategy, using differential display analysis I compared global gene expression in a subset of tumors with known homozygous inactivating WT1 mutations (WT1-tumors) to the gene expression in a panel of appropriate control tissues (fetal kidney, normal kidney, rhabdoid tumor and pediatric renal cell carcinoma). Transcripts that are aberrantly expressed in this subset of Wilms tumors are candidates for endogenous transcriptional regulation by WT1 as well as for potentially functioning in the development of WT. By this approach I identified several differentially expressed transcripts. I further characterized two of these transcripts, identifying a candidate WT gene in the process. I then performed a detailed analysis of this WT candidate gene, which maps to 7p. Future studies will shed more light on the role of these differentially expressed genes in WT. ^
Resumo:
DNA-directed nucleoside analogues, such as ara-C, fludarabine, and gemcitabine, are antimetabolites effective in the treatment of a variety of cancers. However, resistance to nucleoside analogue-based chemotherapy in treatments is still a major problem in therapy. Therefore, it is essential to develop rationales for optimizing the use of nucleoside analogues in combination with other anticancer drugs or modalities such as radiation. The present study focuses on establishing mechanism-based combination strategy to overcome resistance to nucleoside analogues. ^ I hypothesized that the cytostatic concentrations of nucleoside analogues may cause S-phase arrest by activating an S-phase checkpoint that consists of a series of kinases. This may allow cells to repair damaged DNA over time and spare cytotoxicity. Thus, the ability of cells to enact an S-phase arrest in response to incorporation of potentially lethal amounts of nucleoside analogue may serve as a mechanism of resistance to S-phase-specific agents. As a corollary, the addition of a kinase inhibitor, such as UCN-01, may dysregulate the checkpoint response and abrogate the survival of S-phase-arrested cells by suppression of the survival signaling pathways. Using gemcitabine as a model of S-phase-specific nucleoside analogues in human acute myelogenous leukemia ML-1 cells, I demonstrated that cells arrested in S-phase in response to cytostatic conditions. Proliferation continued after washing the cells into drug-free medium, suggesting S-phase arrest served as a resistance mechanism of cancer cells to spare cytotoxicity of nucleoside analogues. However, nontoxic concentrations of UCN-01 rapidly killed S-phase-arrested cells by apoptosis. Furthermore, the molecular mechanism for UCN-01-induced apoptosis in S-phase-arrested cells was through inhibition of survival pathways associated with these cells. In this regard, suppression of the PI 3-kinase-Akt-Bad survival pathway as well as the NF-κB signaling pathway were associated with induction of apoptosis in S-phase-arrested cells by UCN-01, whereas the Ras-Raf-MEK-ERK pathway appeared not involved. This study has provided the rationales and strategies for optimizing the design of effective combination therapies to overcome resistance to nucleoside analogues. In fact, a clinical trial of the combination of ara-C with UCN-01 to treat relapsed or refractory AML patients has been initiated at U.T.M.D. Anderson Cancer Center. ^