650 resultados para Biology, Biostatistics|Health Sciences, Nutrition|Health Sciences, Epidemiology|Health Sciences, Oncology
Resumo:
The dramatic poor survival of patients diagnosed with glioblastoma multiforme (GBM) is a reflection of the struggles that accompany traditional treatments. Thus, the development of molecular-based targeted therapies represents new windows for intervention. In this study, we hypothesized that we could select peptide-ligands that selectively target GBM based on the idea that the glioma microenvironment may induce or modify the expression of cell surface receptors that could be accessed by circulating peptides. To select the peptides we employed two distinct in vivo screenings. First, a random phage-displayed peptide library was injected into mice bearing intracranial tumors. Phage that bound to tumor were recovered and sequenced. We found that the tumor-derived phage CLSYKGRC, CNKVSTKC and CQSSREKC were recovered with the highest frequencies and used for subsequent targeting experiments. Second, the phage peptide library was injected into mice without tumors and phage were recovered from brain and sequenced. A phage-displayed peptide (CRTIGPSVC) with homology to transferrin (Tf) was selected and injected into brain tumor-bearing mice. Results showed that after 6 hours of circulation, the CLSYKGRC, CNKVSTKC and CQSSREKC-phage selectively targeted GBM vasculature. In contrast, Tf-like phage accumulated outside the tumor blood vessels in the cytoplasm of cells located within GBM, suggesting it was internalized in vivo. However, after short periods of circulation this phage was restricted to the tumor vasculature. Importantly, none of the selected phage targeted normal brain cells in animals bearing intracranial tumors. An affinity column coupled to the CNKVSTKC zpeptide was used to identify receptors from GBM. Using mass-spectrometry Vimentin, a marker of glial malignancy, was identified as a potential receptor. Other studies showed that the Tf-like phage bound selectively to Apo-Tf (iron free), with no binding to Holo-Tf (iron loaded) or to Tf receptor (TfR). However, the binding of Tf-like phage to glioma cells that express TfR increased in the presence of Apo-Tf. Thus, the Tf-like phage could indirectly target TfR using the endogenous Tf pathway. We propose that the novel peptides identified in this study could be conjugated to therapeutic or imaging agents for use GBM. ^
Resumo:
While there is considerable information on the molecular aberrations associated with the development of endometrial cancer, very little is known of changes in gene expression associated with its antecedent premalignant condition, endometrial hyperplasia. In order to address this, we have compared the level of expression of components of the IGF-I signaling pathway in human endometrial hyperplasia to their level of expression in both the normal pre-menopausal endometrium and endometrial carcinoma. We have also characterized the molecular characteristics of endometrial hyperplasia as it occurs in a murine model of hormone-dependent tumorigenesis of the female reproductive tract. ^ There was a significant and selective increase in the expression of the IGF-I Receptor (IGF-IR) in both human hyperplasia and carcinoma as compared to the normal endometrium. The receptor was also activated, as judged by increased tyrosine phosphorylation. In addition, in hyperplasia and carcinoma there is activation of the downstream component Akt. The expression of the PTEN tumor suppressor is decreased in a subset of subjects with hyperplasia and in all of the carcinomas. The simultaneous loss of PTEN expression and increased IGF-IR activation in the hyperplastic endometrium was associated with an increased incidence of endometrial carcinoma elsewhere within the uterus. In the rodent hyperplasia, there was a significant increase in the expression and activation of Akt that appears to be attributable to a marked increase in the expression of IGF-II. ^ Our studies have demonstrated the pathologic proliferation of both the human and rodent endometrium is linked to a marked activation of the Akt pathway. However the cause of this dysregulation is different in the human disease and the animal model. In rodents, hyperplasia is linked to increased expression of one of the ligands of the IGF-IR, IGF-II. In humans the IGF-I receptor itself is upregulated and activated. Additional activation of the Akt pathway via the suppression of PTEN activity, results in conditions that are associated with the marked increase in the probability of developing endometrial cancer. Our data suggests that increased activity of the IGF-I pathway plays the key role in the hyperproliferative state characteristic of endometrial hyperplasia and cancer.^
Resumo:
Lung cancer is a devastating disease with very poor prognosis. The design of better treatments for patients would be greatly aided by mouse models that closely resemble the human disease. The most common type of human lung cancer is adenocarcinoma with frequent metastasis. Unfortunately, current models for this tumor are inadequate due to the absence of metastasis. Based on the molecular findings in human lung cancer and metastatic potential of osteosarcomas in mutant p53 mouse models, I hypothesized that mice with both K-ras and p53 missense mutations might develop metastatic lung adenocarcinomas. Therefore, I incorporated both K-rasLA1 and p53RI72HΔg alleles into mouse lung cells to establish a more faithful model for human lung adenocarcinoma and for translational and mechanistic studies. Mice with both mutations ( K-rasLA1/+ p53R172HΔg/+) developed advanced lung adenocarcinomas with similar histopathology to human tumors. These lung adenocarcinomas were highly aggressive and metastasized to multiple intrathoracic and extrathoracic sites in a pattern similar to that seen in lung cancer patients. This mouse model also showed gender differences in cancer related death and developed pleural mesotheliomas in 23.2% of them. In a preclinical study, the new drug Erlotinib (Tarceva) decreased the number and size of lung lesions in this model. These data demonstrate that this mouse model most closely mimics human metastatic lung adenocarcinoma and provides an invaluable system for translational studies. ^ To screen for important genes for metastasis, gene expression profiles of primary lung adenocarcinomas and metastases were analyzed. Microarray data showed that these two groups were segregated in gene expression and had 79 highly differentially expressed genes (more than 2.5 fold changes and p<0.001). Microarray data of Bub1b, Vimentin and CCAM1 were validated in tumors by quantitative real-time PCR (QPCR). Bub1b , a mitotic checkpoint gene, was overexpressed in metastases and this correlated with more chromosomal abnormalities in metastatic cells. Vimentin, a marker of epithelial-mesenchymal transition (EMT), was also highly expressed in metastases. Interestingly, Twist, a key EMT inducer, was also highly upregulated in metastases by QPCR, and this significantly correlated with the overexpression of Vimentin in the same tumors. These data suggest EMT occurs in lung adenocarcinomas and is a key mechanism for the development of metastasis in K-ras LA1/+ p53R172HΔg/+ mice. Thus, this mouse model provides a unique system to further probe the molecular basis of metastatic lung cancer.^
Resumo:
Signal transducer and activator of transcription 3 (Stat3) is a signaling molecule that transduces signal from cell surface receptors, itself translocates into the nucleus, binds to consensus promoter sequences and activates gene transcription. Here, we showed that Stat3 is constitutively activated in both premalignant tumors (papillomas) and squamous cell carcinomas of mouse skin that is induced by topical treatment with an initiator 7,12-dimethylbenz[a]anthracene (DMBA) followed by a tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Additional data demonstrated that epidermal growth factor signaling contributes to the activation of Stat3 in this model. Using mice where Stat3 function is abrogated in keratinocytes via the Cre-LoxP system (K5Cre.Stat3 flox/flox), we demonstrated that Stat3 is required for de novo carcinogenesis since Stat3 deficiency leads to a complete abrogation of skin tumor development induced by DMBA and TPA. We subsequently showed that Stat3 plays a role in both the initiation and promotion stages of carcinogenesis. During initiation, Stat3 functions as an anti-apoptotic molecule for maintaining the survival of DNA-damaged keratinocyte stem cells. During promotion, Stat3 functions as a critical regulator for G1 to S phase cell cycle progression to confer selective clonal expansion of initiated cells into papillomas. On the other hand, using transgenic mice over-expressing a constitutively dimerized form of Stat3 (Stat3C) in keratinocytes (K5.Stat3C), we revealed a role for Stat3 in tumor progression. After treatment with DMBA and TPA, K5.Stat3C transgenic mice developed skin tumors with a shorter latency when 100% bypassed the premalignant stage and became carcinoma in situ. Histological and immunohistochemical analysis revealed these tumors as highly vascularized and poorly differentiated. More strikingly, these tumors exhibited invasion into surrounding mesenchymal tissue, some of which metastasized into lung. The tumor-mesenchymal front was characterized by partial loss of E-cadherin and elevation of vimentin, markers characterizing epithelial-mesenchymal transition. On the other hand, inhibition of Stat3 via a decoy oligonucleotide led to a significant reduction of tumor size in approximately 50% of all papillomas tested. In conclusion, we demonstrated that Stat3 plays a critical in all three stages (initiation, promotion and progression) of skin carcinogenesis, and it may potentially become a good target for cancer prevention and anti-cancer therapy. ^
Resumo:
Classical ablation studies have shown that neural crest cells (NCC) are critical for thymus organogenesis, though their role in this process has never been determined. We have used a mouse model deficient in NCC near the thymus rudiment to investigate the role of NCC in thymus organogenesis. Splotch mice exhibit a lack of NCC migration due to mutation in the gene encoding the transcription factor Pax 3. Homozygous mutants, designated Pax3Sp/Sp, display a range of phenotypes including spina bifida, cardiac outflow tract deformities, and craniofacial deformities. Pax3Sp/Sp, mice have also been reported to have hypoplastic and abnormal thymi, which is consistent with the expected result based on the classical ablation studies. However, in contrast to the dogma, we find that the thymus lobes in Pax3Sp/Sp, mice are even larger in size than those of littermate controls, although they fail to migrate and are therefore ectopic. Differentiation of the thymic epithelial compartments occurs normally, including the ability to import hematopoietic precursors, until the embryos die at embryonic day E13.0. We also investigated the patterning of the third pharyngeal pouch which gives rise to both the thymus and the parathyroid. Using RNA probes to detect expression of transcription factors exclusively expressed in the ventral, thymus- or dorsal, parathyroidfated domains of the E11.5 third pouch, we show that the parathyroid domain is restricted and the thymus-fated domain is expanded in Pax3Sp/Sp, embryos. Furthermore, mixing of the boundary between these domains occurs at E12.0. These results necessitate reconsideration of the previously accepted role for NCC in thymus organogenesis. NCC are not required for outgrowth of the thymus up to E13.0, and most strikingly, we have discovered a novel role for NCC in establishing parathyroid versus thymus fate boundaries in the third pharyngeal pouch. ^
Resumo:
Over-expression of the receptor tyrosine kinase ErbB2 is prevalent in approximately 30% of human breast carcinomas and confers Taxol resistance. In breast cancer cells, Taxol induces tubulin polymerization and hyperstable microtubule formation. This in turn prematurely activates Cdc2 kinase allowing early entry into the G2/M phase of the cell cycle resultant in mitotic catastrophe followed by apoptosis. Over-expression of ErbB2 upregulates p21Cip1, which inhibits Cdc2 activation, and leads to Taxol resistance in patients. However, the mechanism of ErbB2-mediated p21 Cip1 upregulation is unclear. Here in this study, we investigated the mechanism of ErbB2 downstream signaling events leading to upregulation. The CDKN1A (p21Cip1) gene promoter contains numerous cis-elements including a Signal transducer and activator of transcription (STAT) Inducable Element (SIE) located at -679 kb. Our studies showed ErbB2 overexpressing cells had increased activated levels of STAT3, and therefore we hypothesized that STAT3 is responsible for the upregulation of the p21Cip1 promoter by ErbB2. EMSA and ChIP assays confirmed the binding of STAT3 to the p21Cip1 promoter and luciferase assays showed higher p21 Cip1 promoter activity in ErbB2 over-expressing transfectants when compared to parental cells, in a STAT3 binding site dependant manner. Additionally, reduced level of STAT3 led to reduced p21Cip1 protein expression and promoter activity indicating that both the STAT3 binding site and STAT3 protein are required for ErbB2-mediated p21Cip1 upregulation. Further investigation of ErbB2 downstream signaling showed increased Src kinase activity in ErbB2 over-expressing cells which was required for ErbB2-mediated STAT3 activation and p21Cip1 increase. Treatment of ErbB2 over-expressing resistant cells with STAT3 inhibitor peptides sensitized the cells to Taxol. In addition to classical signal transduction pathways, I identified a novel ErbB2 mediated regulatory mechanism of p21Cip1. I found that a nuclear ErbB2 and STAT3 complex binds directly to the p21Cip1 promoter offering a non-classical mechanism of p21Cip1 promoter regulation. These data suggest that ErbB2 over-expression can confer Taxol resistance of breast cancer cells by transcriptional upregulation of p21 Cip1 via activation of STAT3 by Src kinase and also by cooperation with nuclear ErbB2. The data suggest a potential clinical mechanism for STAT3 inhibitors in sensitizing ErbB2 over-expressing breast cancers to Taxol. ^
Resumo:
Tuberculosis is the leading cause of death in the world due to a single infectious agent, making it critical to investigate all aspects of the immune response mounted against the causative agent, Mycobacterium tuberculosis , in order to better treat and prevent disease. Previous observations show a disparity in the ability to control mycobacterial growth between mouse strains sufficient in C5, such as C57BL/6 and B10.D2/nSnJ, and those naturally deficient in C5, such as A/J and B10.D2/nSnJ, with C5 deficient mice being more susceptible. It has been shown that during M. tuberculosis infection, C5 deficient macrophages have a defect in production of interleukin (IL)-12, a cytokine involved in the cyclical activation between infected macrophages and effector T cells. T cells stimulated by IL-12 produce interferon (IFN)-γ, the signature cytokine of T helper type 1 (Th1) cells. It is known that a cell-mediated Th1 response is crucial for control of M. tuberculosis in the lungs of humans and mice. This study demonstrates that murine T cells express detectable levels of CD88, a receptor for C5a (C5aR), following antigen presentation by macrophages infected with mycobacteria. T cells from C5 deficient mice infected with M. tuberculosis were found to secrete less IFN-γ and had a reduced Th1 phenotype associated with fewer cells expressing the transcription factor, T-box expressed in T cells (T-bet). The altered Th1 phenotype in M. tuberculosis infected C5 deficient mice coincided with a rise in IL-4 and IL-10 secretion from Th2 cells and inducible regulatory T cells, respectively. It was found that the ineffective T cell response to mycobacteria in C5 deficient mice was due indirectly to a lack of C5a via poor priming by infected macrophages and possibly by a direct interaction between T cells and C5a peptide. Therefore, these studies show a link between the cells of the innate and adaptive arms of the immune system, macrophages and T cells respectively, that was mediated by C5a using a mouse model of M. tuberculosis infection. ^
Resumo:
Background. Clostridium difficile is the leading cause of hospital associated infectious diarrhea and colitis. About 3 million cases of Clostridium difficile diarrhea occur each year with an annual cost of $1 billion. ^ About 20% of patients acquire C. difficile during hospitalization. Infection with Clostridium difficile can result in serious complications, posing a threat to the patient's life. ^ Purpose. The aim of this research was to demonstrate the uniqueness in the characteristics of C. difficile positive nosocomial diarrhea cases compared with C. difficile negative nosocomial diarrhea controls admitted to a local hospital. ^ Methods. One hundred and ninety patients with a positive test and one hundred and ninety with a negative test for Clostridium difficile nosocomial diarrhea, selected from patients tested between January 1, 2002 and December 31, 2003, comprised the study population. Demographic and clinical data were collected from medical records. Logistic regression analyses were conducted to determine the associated odds between selected variables and the outcome of Clostridium difficile nosocomial diarrhea. ^ Results. For the antibiotic classes, cephalosporins (OR, 1.87; CI 95, 1.23 to 2.85), penicillins (OR, 1.57; CI 95, 1.04 to 2.37), fluoroquinolones (OR, 1.65; CI 95, 1.09 to 2.48) and antifungals (OR, 2.17; CI 95, 1.20 to 3.94), were significantly associated with Clostridium difficile nosocomial diarrhea Ceftazidime (OR, 1.95; CI 95, 1.25 to 3.03, p=0.003), gatifloxacin (OR, 1.97; CI 95, 1.31 to 2.97, p=0.001), clindamycin (OR, 3.13; CI 95, 1.99 to 4.93, p<0.001) and vancomycin (OR, 1.77; CI 95, 1.18 to 2.66, p=0.006, were also significantly associated with the disease. Vancomycin was not statistically significant when analyzed in a multivariable model. Other significantly associated drugs were, antacids, laxatives, narcotics and ranitidine. Prolong use of antibiotics and an increased number of comorbid conditions were also associated with C. difficile nosocomial diarrhea. ^ Conclusion. The etiology for C. difficile diarrhea is multifactorial. Exposure to antibiotics and other drugs, prolonged antibiotic usage, the presence and severity of comorbid conditions and prolonged hospital stay were shown to contribute to the development of the disease. It is imperative that any attempt to prevent the disease, or contain its spread, be done on several fronts. ^
Resumo:
Mammalian cells express 7 β-tubulin isotypes in a tissue specific manner. This has long fueled the speculation that different isotypes carry out different functions. To provide direct evidence for their functional significance, class III, IVa, and VI β-tubulin cDNAs were cloned into a tetracycline regulated expression vector and stably transfected Chinese hamster ovary cell lines expressing different levels of ectopic β-tubulin were compared for effects on microtubule organization, microtubule assembly and sensitivity to antimitotic drugs. It was found that all three isotypes coassembled with endogenous β-tubulin. βVI expression caused distinct microtubule rearrangements including microtubule dissociation from the centrosome and accumulation at the cell periphery; whereas expression of βIII and βVIa caused no observable changes in the interphase microtubule network. Overexpression of all 3 isotypes caused spindle malformation and mitotic defects. Both βIII and βIVa disrupted microtubule assembly in proportion to their abundance and thereby conferred supersensitivity to microtubule depolymerizing drugs. In contrast, βVI stabilized microtubules at low stoichiometry and thus conferred resistance to many microtubule destabilizing drugs but not vinblastine. The 3 isotypes caused differing responses to microtubule stabilizing drugs. Expression of βIII conferred paclitaxel resistance while βVI did not. Low expression of βIVa caused supersensitivity to paclitaxel, whereas higher expression resulted in the loss of supersensitivity. The results suggest that βIVa may possess an enhanced ability to bind paclitaxel that increases sensitivity to the drug and acts substoichiometrically. At high levels of βVIa expression, however, microtubule disruptive effects counteract the assembly promoting pressure exerted by increased paclitaxel binding, and drug supersensitivity is lost. From this study, I concluded that β-tubulin isotypes behave differently from each other in terms of microtubule organization, microtubule assembly and dynamics, and antimitotic drug sensitivity. The isotype composition of cell can impart subtle to dramatic effects on the properties of microtubules leading to potential functional consequences and opening the opportunity to exploit differences in microtubule isotype composition for therapeutic gain. ^
Resumo:
Interactions between neoplastic cells and the host stroma play a role in both tumor cell migration and proliferation. Stromal cells provide structural support for malignant cells, modulate the tumor microenvironment, and influence phenotypic behavior as well as the aggressiveness of the malignancy. In response, the tumor provides growth factors, cytokines, and cellular signals that continually initiate new stromal reactions and recruit new cells into the microenvironment to further support tumor growth. Since growing tumors recruit local cells, as well as supplemental cells from the circulation, such as fibroblasts and endothelial precursors, the question arises if it would be possible to access circulating stromal cells to modify the tumor microenvironment for therapeutic benefits. One such cell type, mesenchymal stem cells (MSC), could theoretically be engrafted into stroma. MSC are pluripotent cells that have been shown to form stromal elements such as myofibroblasts, perivascular tissues and connective tissues. Several reports have demonstrated that MSC can incorporate into sites of wound healing and tissue repair, due to active tissue remodeling and local paracrine factors, and given the similarity between wound healing and the carcinoma induced stromal response one can hypothesize that MSC have the potential to be recruited to sites of tumor development. In addition, gene-modified MSC could be used as cellular vehicles to deliver gene products into tumors. My results indicate that MSC home to and participate in tumor stroma formation in ovarian tumor xenografts in mice. Additionally, once homed to tumor beds, MSC proliferate rapidly and integrate. My studies aim at understanding the fate of MSC in the tumor microenvironment, as well as utilizing them for cellular delivery of therapeutic genes into the stroma of ovarian carcinomas. ^
Resumo:
Translation termination as a result of premature nonsense codon-incorporation in a RNA transcript can lead to the production of aberrant proteins with gain-of-function or dominant negative properties that could have deletrious effects on the cell. T-cell Receptor (TCR) genes acquire premature termination codons two-thirds of the time as a result of the error-prone programmed rearrangement events that normally occur during T-cell development. My studies have focused on the fate of TCR precursor mRNAs in response to in-frame nonsense mutations. ^ Previous published studies from our laboratory have shown that TCR precursor mRNAs are subject to nonsense mediated upregulation of pre-mRNA (NMUP). In this dissertation, I performed substitution and deletion analysis to characterize specific regions of TCR which are required to elicit NMUP. I performed frame- and factor-dependence studies to determine its relationship with other nonsense codon induced responses using several approaches including (i) translation dependence studies (ii) deletion and mutational analysis, as well as (iii) siRNA mediated knockdown of proteins involved. I also addressed the underlying molecular mechanism for this pre-mRNA upregulation by (i) RNA half-life studies using a c-fos inducible promoter, and (ii) a variety of assays to determine pre-mRNA splicing efficiency. ^ Using these approaches, I have identified a region of TCR that is both necessary and sufficient to elicit (NMUP). I have also found that neither cytoplasmic translation machinery nor the protein UPF1 are involved in eliciting this nuclear event. I have shown that the NMUP can be induced not only by nonsense and frameshift mutations, but also missense mutations that disrupt a cis splicing element in the exon that contains the mutation. However, the effect of nonsense mutations on pre-mRNA is unique and distinguishable from that of missense mutations in that nonsense mutations can upregulate pre-mRNA in a frame-dependent manner. Lastly, I provide evidence that NMUP occurs by a mechanism in which nonsense mutations inhibit the splicing of introns. In summary, I have found that TCR precursor mRNAs are subject to multiple forces involving both RNA splicing and translation that can either increase or decrease the levels of these precursor mRNAs. ^
Resumo:
Purpose. To examine the association between living in proximity to Toxics Release Inventory (TRI) facilities and the incidence of childhood cancer in the State of Texas. ^ Design. This is a secondary data analysis utilizing the publicly available Toxics release inventory (TRI), maintained by the U.S. Environmental protection agency that lists the facilities that release any of the 650 TRI chemicals. Total childhood cancer cases and childhood cancer rate (age 0-14 years) by county, for the years 1995-2003 were used from the Texas cancer registry, available at the Texas department of State Health Services website. Setting: This study was limited to the children population of the State of Texas. ^ Method. Analysis was done using Stata version 9 and SPSS version 15.0. Satscan was used for geographical spatial clustering of childhood cancer cases based on county centroids using the Poisson clustering algorithm which adjusts for population density. Pictorial maps were created using MapInfo professional version 8.0. ^ Results. One hundred and twenty five counties had no TRI facilities in their region, while 129 facilities had at least one TRI facility. An increasing trend for number of facilities and total disposal was observed except for the highest category based on cancer rate quartiles. Linear regression analysis using log transformation for number of facilities and total disposal in predicting cancer rates was computed, however both these variables were not found to be significant predictors. Seven significant geographical spatial clusters of counties for high childhood cancer rates (p<0.05) were indicated. Binomial logistic regression by categorizing the cancer rate in to two groups (<=150 and >150) indicated an odds ratio of 1.58 (CI 1.127, 2.222) for the natural log of number of facilities. ^ Conclusion. We have used a unique methodology by combining GIS and spatial clustering techniques with existing statistical approaches in examining the association between living in proximity to TRI facilities and the incidence of childhood cancer in the State of Texas. Although a concrete association was not indicated, further studies are required examining specific TRI chemicals. Use of this information can enable the researchers and public to identify potential concerns, gain a better understanding of potential risks, and work with industry and government to reduce toxic chemical use, disposal or other releases and the risks associated with them. TRI data, in conjunction with other information, can be used as a starting point in evaluating exposures and risks. ^
Resumo:
Both angiogenesis and vasculogenesis contribute to the formation and expansion of tumor neovasculature. We demonstrated that bone marrow (BM)-derived cells migrated to TC71 Ewing's tumors and differentiated into endothelial cells lining perfused, functional tumor neovessels. In addition, a substantial fraction of recruited, BM-derived cells resided in the vessel vicinity but did not demonstrate endothelial differentiation. Rather, these perivascular cells expressed desmin and PDGFR-β, implying pericyte-like/vascular smooth muscle cell differentiation. No defined, consensus set of markers exists for endothelial progenitor cells (EPCs) and the specific subsets of BM cells that participate in vessel formation are poorly understood. We used a functional in vivo assay to investigate the roles performed by specific human- and murine-derived stem/progenitor subpopulations within Ewing's sarcoma tumors. CD34 +45+, CD34+38-, VEGFR2 + and Sca1+Gr1+ cells were demonstrated to establish residence within the expanding tumor vascular network and differentiate into endothelial cells and pericytes. By constrast, CD34-45 + and Sca1-Gr1+ cells predominantly localized to sites outside the Ewing's tumor vasculature, and differentiated into macrophages. Cytokines, such as VEGF, influence the recruitment of BM cells and their incorporation into the tumor vasculature. VEGF165-inhibited TC/siVEGF7-1 Ewing's tumors showed delayed in vivo tumor growth, decreased vessel density, and reduced infiltration of BM progenitor cells. We tested whether another chemoattractant, Stromal Cell-Derived Factor-1 (SDF-1), could augment the growth of these VEGF165-inhibited TC/siVEGF 7-1 tumors by enhancing the recruitment of BM cells and stimulating neovasculature expansion. SDF-1 promoted progenitor cell chemotaxis and retainment of BM-derived pericyte precursors in close association with functional, perfused tumor blood vessels. Treatment of TC/siVEGF7-1 tumors with adenovirus-SDF-1α resulted in augmented tumor size, enhanced pericyte coverage of tumor neovessels, remodeling of vascular endothelium into larger, functional structures, and upregulation of PDGF-BB, with no effect on VEGF165. Taken together, these findings suggest that the recruitment of BM stem/progenitor cells plays an important role in the growth of Ewing's tumors. ^
Resumo:
A number of indoor environmental factors, including bioaerosol or aeroallergen concentrations have been identified as exacerbators for asthma and allergenic conditions of the respiratory system. People generally spend 90% to 95% of their time indoors. Therefore, understanding the environmental factors that affect the presence of aeroallergens indoors as well as outdoors is important in determining their health impact, and in identifying potential intervention methods. This study aimed to assess the relationship between indoor airborne fungal spore concentrations and indoor surface mold levels, indoor versus outdoor airborne fungal spore concentrations and the effect of previous as well as current water intrusion. Also, the association between airborne concentration of indoor fungal spores and surface mold levels and the age of the housing structure were examined. Further, the correlation between indoor concentrations of certain species was determined as well. ^ Air and surface fungal measurements and related information were obtained from a Houston-area data set compiled from visits to homes filing insurance claims. During the sampling visit these complaint homes exhibited either visible mold or a combination of visible mold and water intrusion problems. These data were examined to assess the relationships between the independent and dependent variables using simple linear regression analysis, and independent t-tests. To examine the correlation between indoor concentrations of certain species, Spearman correlation coefficients were used. ^ There were 126 houses sampled, with spring, n=43 (34.1%), and winter, n=42 (33.3%), representing the seasons with the most samples. The summer sample illustrated the highest geometric mean concentration of fungal spores, GM=5,816.5 relative to winter, fall and spring (GM=1,743.4, GM=3,683.5 and GM=2,507.4, respectively). In all seasons, greater concentrations of fungal spores were observed during the cloudy weather conditions. ^ The results indicated no statistically significant association between outdoor total airborne fungal spore concentration and total living room airborne fungal spore concentration (β = 0.095, p = 0.491). Second, living room surface mold levels were not associated with living room airborne fungal spore concentration, (β= 0.011, p = 0.669). Third, houses with and without previous water intrusion did not differ significantly with respect to either living room (t(111) = 0.710, p = 0.528) or bedroom (t(111) =1.673, p = 0.162) airborne fungal spore concentrations. Likewise houses with and without current water intrusion did not differ significantly with respect to living room (t(109)=0.716, p = 0.476) or bedroom (t(109) = 1.035, p = 0.304) airborne fungal spore concentration. Fourth, houses with and without current water intrusion did not differ significantly with respect to living room (χ 2 (5) = 5.61, p = 0.346), or bedroom (χ 2 (5) = 1.80, p = 0.875) surface mold levels. Fifth, the age of the house structure did not predict living room (β = 0.023, p = 0.102) and bedroom (β = 0.023, p = 0.065) surface mold levels nor living room (β = 0.002, p = 0.131) and bedroom (β = 0.001, p = 0.650) fungal spore airborne concentration. Sixth, in houses with visually observed mold growth there was statistically significant differences between the mean living room concentrations and mean outdoor concentrations for Cladosporium (t (107) = 11.73, p < 0.0001), Stachybotrys (t (106)=2.288, p = 0.024, and Nigrosporia (t (102) = 2.267, p = 0.025). Finally, there was a significant correlation between several living room fungal species pairs, namely, Cladosporium and Stachybotrys (r = 0.373, p <0.01, n=65), Curvularia and Aspergillus/Penicillium (r = 0.205, p < 0.05, n= 111)), Curvularia and Stachybotrys (r = 0.205, p < 0.05, n=111), Nigrospora and Chaetomium (r = 0.254, p < 0.01, n=105) and Stachybotrys and Nigrospora (r = 0.269, p < 0.01, n=105). ^ This study has demonstrated several positive findings, i.e., significant pairwise correlations of concentrations of several fungal species in living room air, and significant differences between indoor and outdoor concentrations of three fungal species in homes with visible mold. No association was observed between indoor and outdoor fungal spore concentrations. Neither living room nor bedroom airborne spore concentrations and surface mold levels were related to the age of the house or to water intrusion, either previous or current. Therefore, these findings suggest the need for evaluating additional parameters, as well as combinations of factors such as humidity, temperature, age of structure, ventilation, and room size to better understand the determinants of airborne fungal spore concentrations and surface mold levels in homes. ^
Resumo:
Colorectal cancer is the forth most common diagnosed cancer in the United States. Every year about a hundred forty-seven thousand people will be diagnosed with colorectal cancer and fifty-six thousand people lose their lives due to this disease. Most of the hereditary nonpolyposis colorectal cancer (HNPCC) and 12% of the sporadic colorectal cancer show microsatellite instability. Colorectal cancer is a multistep progressive disease. It starts from a mutation in a normal colorectal cell and grows into a clone of cells that further accumulates mutations and finally develops into a malignant tumor. In terms of molecular evolution, the process of colorectal tumor progression represents the acquisition of sequential mutations. ^ Clinical studies use biomarkers such as microsatellite or single nucleotide polymorphisms (SNPs) to study mutation frequencies in colorectal cancer. Microsatellite data obtained from single genome equivalent PCR or small pool PCR can be used to infer tumor progression. Since tumor progression is similar to population evolution, we used an approach known as coalescent, which is well established in population genetics, to analyze this type of data. Coalescent theory has been known to infer the sample's evolutionary path through the analysis of microsatellite data. ^ The simulation results indicate that the constant population size pattern and the rapid tumor growth pattern have different genetic polymorphic patterns. The simulation results were compared with experimental data collected from HNPCC patients. The preliminary result shows the mutation rate in 6 HNPCC patients range from 0.001 to 0.01. The patients' polymorphic patterns are similar to the constant population size pattern which implies the tumor progression is through multilineage persistence instead of clonal sequential evolution. The results should be further verified using a larger dataset. ^