589 resultados para Biology, Cell|Health Sciences, Human Development
Resumo:
This study aimed to develop and validate The Cancer Family Impact Scale (CFIS), an instrument for use in studies investigating relationships among family factors and colorectal cancer (CRC) screening when family history is a risk factor. We used existing data to develop the measure from 1,285 participants (637 families) across the United States who were in the Johns Hopkins Colon Cancer Genetic Testing study. Participants were 94% white with an average age of 50.1 years, and 60% were women. None had a personal CRC history, and eighty percent had 1 FDR with CRC and 20% had more than one FDR with CRC. The study had three aims: (1) to identify the latent factors underlying the CFIS via exploratory factor analysis (EFA); (2) to confirm the findings of the EFA via confirmatory factor analysis (CFA); and (3) to assess the reliability of the scale via Cronbach's alpha. Exploratory analyses were performed on a split half of the sample, and the final model was confirmed on the other half. The EFA suggested the CFIS was an 18-item measure with 5 latent constructs: (1) NEGATIVE: negative effects of cancer on the family; (2) POSITIVE: positive effects of cancer on the family; (3) COMMUNICATE: how families communicate about cancer; (4) FLOW: how information about cancer is conveyed in families; and (5) NORM: how individuals react to family norms about cancer. CFA on the holdout sample showed the CFIS to have a reasonably good fit (Chi-square = 389.977, df = 122, RMSEA= 0.058 (.052-.065), CFI=.902, TLI=.877, GF1=.939). The overall reliability of the scale was α=0.65. The reliability of the subscales was: (1) NEGATIVE α = 0.682; (2) POSITIVE α = 0.686; (3) COMMUNICATE α = 0.723; (4) FLOW α = 0.467; and (5) NORM α = 0.732. ^ We concluded the CFIS to be a good measure with most fit levels over 0.90. The CFIS could be used to compare theoretically driven hypotheses about the pathways through which family factors could influence health behavior among unaffected individuals at risk due to family history, and also aid in the development and evaluation of cancer prevention interventions including a family component. ^
Resumo:
Primary cutaneous melanoma is a cancer arising from melanocytes in the skin. In recent decades the incidence of this malignancy has increased significantly. Mortality rates are high for patients with tumors measuring over a few millimeters in thickness. Response rates to conventional radiation and chemotherapy are very low in patients with metastatic melanoma. New therapies targeting melanoma’s aberrant cell signaling pathways such as the MAP Kinase pathway are being developed. Mutations of NRAS and BRAF genes are quite common in cutaneous melanoma and lead to constitutive activation of the MAP Kinase pathway. This study tests the hypothesis that NRAS and BRAF mutations increase as a tumor progresses from the noninvasive radial growth phase (RGP) to the invasive vertical growth phase (VGP). Laser capture microdissection was used to obtain separate, pure tumor DNA samples from the RGP and VGP of thirty primary cutaneous melanomas. PCR was used to amplify NRAS exon 2 and BRAF exon 15 tumor DNA. The amplified DNA was sequenced and analyzed for mutations. An overall mutation rate of 74% was obtained for the twenty-three melanomas in which there were complete sequence results. With the exception of one melanoma NRAS and BRAF mutations were mutually exclusive. All seven NRAS exon 2 mutations involved codon 61. Three of these melanomas had mutations in both the RGP and VGP. The remaining four tumors were wild type for NRAS exon 2 in the RGP but mutated in the VGP. Of the fifteen BRAF exon 15 mutated melanomas all but one involved codon 600. Twelve of the fifteen BRAF exon 15 mutations were the T1799A type. Nine of the fifteen BRAF mutated tumors had the same mutation in both the RGP and VGP. Five of fifteen melanomas had wild type RGP DNA and BRAF exon 15 mutated VGP DNA. A single melanoma had BRAF exon 15 mutated DNA in the RGP and wild type DNA in the VGP. Overall, these results suggest a trend toward the acquisition of NRAS and BRAF mutations as cutaneous melanomas change from a noninvasive to an invasive, potentially deadly cancer.^
Resumo:
To identify genetic susceptibility loci for severe diabetic retinopathy, 286 Mexican-Americans with type 2 diabetes from Starr County, Texas completed detailed physical and ophthalmologic examinations including fundus photography for diabetic retinopathy grading. 103 individuals with moderate-to-severe non-proliferative diabetic retinopathy or proliferative diabetic retinopathy were defined as cases for this study. DNA samples extracted from study subjects were genotyped using the Affymetrix GeneChip® Human Mapping 100K Set, which includes 116,204 single nucleotide polymorphisms (SNPs) across the whole genome. Single-marker allelic tests and 2- to 8-SNP sliding-window Haplotype Trend Regression implemented in HelixTreeTM were first performed with these direct genotypes to identify genes/regions contributing to the risk of severe diabetic retinopathy. An additional 1,885,781 HapMap Phase II SNPs were imputed from the direct genotypes to expand the genomic coverage for a more detailed exploration of genetic susceptibility to diabetic retinopathy. The average estimated allelic dosage and imputed genotypes with the highest posterior probabilities were subsequently analyzed for associations using logistic regression and Fisher's Exact allelic tests, respectively. To move beyond these SNP-based approaches, 104,572 directly genotyped and 333,375 well-imputed SNPs were used to construct genetic distance matrices based on 262 retinopathy candidate genes and their 112 related biological pathways. Multivariate distance matrix regression was then used to test hypotheses with genes and pathways as the units of inference in the context of susceptibility to diabetic retinopathy. This study provides a framework for genome-wide association analyses, and implicated several genes involved in the regulation of oxidative stress, inflammatory processes, histidine metabolism, and pancreatic cancer pathways associated with severe diabetic retinopathy. Many of these loci have not previously been implicated in either diabetic retinopathy or diabetes. In summary, CDC73, IL12RB2, and SULF1 had the best evidence as candidates to influence diabetic retinopathy, possibly through novel biological mechanisms related to VEGF-mediated signaling pathway or inflammatory processes. While this study uncovered some genes for diabetic retinopathy, a comprehensive picture of the genetic architecture of diabetic retinopathy has not yet been achieved. Once fully understood, the genetics and biology of diabetic retinopathy will contribute to better strategies for diagnosis, treatment and prevention of this disease.^
Resumo:
Trehalose dimycolate (TDM) is a mycobacterial glycolipid that is released from the surface of virulent M. tuberculosis. We evaluated the rate of growth, colony characteristics and production of TDM by Mycobacterium tuberculosis strains isolated from different clinical sites. Since detergent removes TDM from organisms, we analyzed growth rate and colony morphology of 79 primary clinical isolates grown as pellicles on the surface of detergent free Middlebrook 7H9 media. The genotype of each had been previously characterized. TDM production was measured by thin layer chromatography on 32 of these isolates. We found that strains isolated from pulmonary sites produced large amounts of TDM, grew rapidly as thin spreading pellicles, showed early cording (<1 week) and climbed the sides of the dish. In contrast, the extrapulmonary isolates (lymph node and bone marrow) produced less TDM (p<0.01), grew as discrete patches with little tendency to spread or climb the walls (p<0.02). The Beijing pulmonary (BP) isolates produced more TDM than non Beijing pulmonary isolates. The largest differences were observed in Beijing strains. The Beijing pulmonary isolates produced more TDM and grew faster than the Beijing extrapulmonary isolates (p<0.01). This was true even when the pulmonary and extrapulmonary isolates were derived from the same clade. These growth characteristics were consistently observed only on the first passage after primary isolation. This suggests that the differences in growth rate and TDM production observed reflect differences in gene expression patterns of pulmonary and extrapulmonary infections, that Mycobacterium tuberculosis in the lung grows more rapidly and produces more TDM than it does in extrapulmonary sites. This provides new opportunities to investigate gene expression of Mycobacterium tuberculosis in human.^
Resumo:
Objective. Gastrointestinal Stromal Tumors (GISTs) are rare mesenchymal tumors of the gastrointestinal (GI) tract with spindled cell, epithelioid, or occasionally pleomorphic morphology. The primary objective of this paper is to describe the demographic and clinical characteristics and survival among GIST patients registered at the University of Texas M.D. Anderson Cancer Center (MDACC). ^ Methods. This cohort study includes 783 consecutive patients diagnosed with GIST from 1995 to 2007. Demographic, clinical and survival information were obtained from the MDACC cancer registry. ^ Statistical Analysis. Kaplan-Meier survival curves, univariate and multivariate Cox proportional hazards analysis were conducted to estimate survival and identify prognostic clinical factors associated with survival. Results. The age at diagnosis of MDACC GIST cases ranged from 17 to 91 with a mean of 57 years and a male-to-female ratio of 1.3:1. The racial distribution was whites 77%, African-Americans 9.5%, Hispanics 9.3% and other races 4.2%. Fifty per cent of the GISTs arose from stomach, 35% small intestine, 7% retroperitoneal space, 6% colorectal and 2% were omentum and mesentery. About half of the tumors were less than 10 cm in size. Fifty eight per cent of the tumors were localized whereas 36% were metastatic. MDACC GIST patients were generally comparable to SEER patients, but, on the average, were 7 years younger than SEER patients and were predominantly whites. ^ Stratification of 783 GIST cases by year of diagnosis based on the introduction of imatinib treatment in 2000 revealed that 60% of the GIST cases were first diagnosed between 2000 and 2007 whereas, 40% were first diagnosed between 1995 and 1999. There was a significant difference between the two cohorts in the distribution of race, GIST symptom, tumor size, tumor site, and stage of the tumor at diagnosis. The 1- and 5-year survival was 93% and 59% in the 1995–2007 cohort. Multivariate Cox regression analysis identified age at diagnosis (p<0.001), female sex (p=0.047), tumor size (p=0.07), multiple cancers (p=0.002), and GIST diagnosed between 2000 and 2007 (p<0.001) were significantly associated with survival. Approximately, 58% of the cases were treated with imatinib whereas 42% did not receive imatinib in 2000–2005 cohort. There was a significant difference in survival between imatinib and non-imatinib groups and in the distribution of tumor size categories, stage of the tumor at diagnosis and cancers before the diagnosis of GIST. The 1- and 5-year survival for imatinib patients was 99% and 73% and was 91% and 63% for non-imatinib patients. Multivariate Cox regression analysis of the 2000–2007 cohort identified, age at diagnosis and tumor stage as possible prognostic factors associated with survival.^
Resumo:
Nucleoside analogs are a class of chemotherapeutic agents with tremendous utility in treating viral infections and cancers. Traditional nucleoside analogs are DNA-directed. However, there is a new group of nucleoside analogs that induce cell death by a direct effect on RNA synthesis. The adenosine analog, 8-chloroadenosine, is incorporated into RNA and is currently in clinical trials. Another congener, 8-amino-adenosine has demonstrated toxicity in multiple myeloma cell lines. Like other nucleoside analogs, 8-amino-adenosine must be metabolized to its triphosphate to elicit a cytotoxic effect. Furthermore, 8-amino-adenosine causes a decline of the intracellular ATP pool and inhibits mRNA poly(A) adenylation. ^ Because of the previously known adenosine analog mechanism as well as the scope of the RNA directed nucleoside analog field, I hypothesized there are multiple mechanisms of transcription inhibition mediating 8-amino-adenosine-induced cell death. Prior to investigating these mechanisms, cell death by 8-amino-adenosine was characterized. 8-Amino-adenosine activates PARP cleavage and induces the caspase cascade. 8-Amino-adenosine increases Annexin V binding and the mitochondrial membrane permeability in wild-type MEF cells. In BAX/BAK deficient MEF cells, 8-amino-adenosine decreases the mitochondrial membrane permeability and induces autophagy. ^ Once cell death was characterized, the mechanisms of 8-amino-adenosine transcription inhibition were assessed. It was established that 8-aminoadenosine treatment causes 8-amino-ATP accumulation and decreases the intracellular ATP concentration, resulting in RNA synthesis inhibition. Several other mechanisms are identified. First, a relationship between ATP decline by 8-amino-adenosine or other known ATP synthesis inhibitors and RNA synthesis is established indicating that effects on cellular bioenergy, regardless of the mechanism of ATP decline, can decrease RNA synthesis. Second, 8-aminoadenosine treatment decreases the phosphorylation of serine residues on the RNA polymerase II C-terminal domain which regulates transcription initiation and elongation. Third, evidence is provided to demonstrate 8-amino-ATP is a substrate for RNA synthesis. Fourth, 8-amino-ATP is incorporated at the 3'-terminal position leading to chain termination. Finally, in vitro transcription assays show that 8-amino-ATP may compete with ATP to decrease de novo mRNA synthesis. Overall, this work demonstrates 8-amino-adenosine is a cytotoxic nucleoside analog that functions to inhibit RNA transcription through multiple mechanisms. ^
Resumo:
Recent outbreaks of dengue fever (DF) along the United States/Mexico border, coupled with the high number of reported cases in Mexico suggest that there is the possibility for DF emergence in Houston, Texas1,2. To determine the presence of DF, populations of Aedes aegypti and Aedes albopictus were identified and tested for dengue virus. Maps were created to identify "hot spots" (Figure 1) based on historical data on Ae. aegypti and Ae. albopictus, demographic information, and locations of human cases of dengue fever. BG Sentinel Traps®, in conjunction with BG Lure® attractant, octanol and dry ice, were used to collect mosquitoes, which were then tested for presence of dengue virus using ELISA techniques. All samples tested were negative for dengue virus (DV). Survival of DV ultimately comes down to whether or not it will be vectored by a mosquito to a susceptible human host. The presence of infected humans and contact with the mosquito vectors are two critical factors necessary in the establishment of DF. Historical records indicate the presence of Ae. aegypti and Ae. albopictus in Harris County, which would support localized dengue transmission if infected individuals are present.^ (1) Brunkard JM, Robles-Lopez JL, Ramirez J, Cifuentes E, Rothenberg SJ, Hunsperger EA, Moore CG, Brussolo RM, Villarreal NA, Haddad BM, 2007. Dengue fever seroprevalence and risk factors, Texas-Mexico border, 2004. Emerg Infect Dis 13: 1477-1483. (2) Ramos MM, Mohammed H, Zielinski-Gutierrez E, Hayden MH, Lopez JL, Fournier M, Trujillo AR, Burton R, Brunkard JM, Anaya-Lopez L, Banicki AA, Morales PK, Smith B, Munoz JL, Waterman SH, 2008. Epidemic dengue and dengue hemorrhagic fever at the Texas-Mexico Border: results of a household-based seroepidemiologic survey, December 2005. Am J Trop Med Hyg 78: 364-369.^
Resumo:
Multiple myeloma (MM) is a debilitating and incurable B-cell malignancy. Previous studies have documented that the hepatocyte growth factor (HGF) plays a role in the pathobiology of MM. The receptor tyrosine kinase MET induced signaling initiates when its ligand HGF binds to the MET receptor. However, the direct importance of MET in MM has not been elucidated. The present work used three different but complementary approaches to reduce MET protein levels or its activity to demonstrate the importance of MET in MM. ^ In the first approach, MET transcript and protein levels were reduced by directly targeting the cellular MET transcripts using shRNA retroviral infection techniques. This direct reduction of MET mRNA leads to a reduction of MET protein levels, which caused an inhibition of growth and induction of cell death. ^ In the second approach, a global transcription inhibitor flavopiridol was used as a potential pharmacological tool to reduce MET levels. MET has a short half-life of 30 min for mRNA and 4 hours for protein; therefore using a RNA pol II inhibitor such as flavopiridol would be a viable option to reduce MET levels. When using flavopiridol in MM cell lines, there was a reduction of MET transcript and protein levels, which was associated with the induction of cell death. ^ Finally in the last strategy, MET kinase activity was suppressed by MP470, a small molecule inhibitor that binds to the ATP binding pocket in the kinase domain. At concentrations where phosphorylation of MET was inhibited there was induction of cell death in MM cell lines and primary cells from patients. In addition, in MM cell lines there was a decrease in phosphorylation of AKT (ser473) and caspase-9 (ser196); downstream of MET, suggesting that the mechanism of action for survival may be through these cascade of events. ^ Overall, this study provides a proof-of-principle that MET is important for the survival of MM cell lines as well as primary plasma cells obtained from patients. Therefore, targeting MET therapeutically may be a possible strategy to treat patients with this debilitating disease of MM. ^
Resumo:
Aortic aneurysms and dissections are the 15th most common cause of death in the United States. Genetic factors contribute to the pathogenesis of thoracic aortic aneurysms and dissections (TAAD). Currently, six loci and four genes have been identified for familial TAAD. Notably, mutations in smooth muscle cell (SMC) contractile genes, ACTA2 and MYH11, are responsible for 15% of familial TAAD, suggesting that proper SMC contraction is important for normal aorta function. Therefore, we hypothesize that mutations in other genes encoding SMC contractile proteins also cause familial TAAD. ^ To test this hypothesis, we used a candidate gene approach to identify causative mutations in SMC contractile genes for familial TAAD. Sequencing DNA in 80 TAAD patients from unrelated families, we identified putative mutations in eight contractile genes. We chose myosin light chain kinase (MLCK ) S1759P for further study for the following reasons: (1) Serine 1759 is conserved between vertebrates and invertebrates. (2) S1759P is predicted to be functionally deleterious by bioinformatics. (3) Low blood pressure is observed in SMC-selective MLCK-deficient mice. ^ In the presence of Ca2+/Calmodulin (CaM), MLCK containing CaM binding and kinase domains are activated to phosphorylate myosin light chain, thereby initiate SMC contraction. The CaM binding sequence of MLCK forms an α-helix structure required for CaM binding. MLCK Serine 1759 is located within the CaM binding domain. S1759P is predicted to decrease the α-helix composition in the CaM binding domain. Hence, we hypothesize that MLCK mutations cause TAAD through disturbing CaM binding and MLCK activity. ^ We further sequenced MLCK in DNA samples from additional 86 probands with familial TAAD. Two more mutations, MLCK A1754T and R1480Stop, were identified, supporting that MLCK mutations cause familial TAAD. ^ To define whether MLCK mutations disrupted CaM binding and MLCK activity, we performed co-immunoprecipitation and kinase assays. Decreased CaM binding and kinase activity was detected in A1754T and S1759P. Moreover, R1480Stop is predicted to truncate kinase and CaM binding domains. We conclude that MLCK mutations disrupt CaM binding and MLCK activity. ^ Collectively, our study is first to show mutations in genes regulating SMC contraction cause TAAD. This finding further highlights the importance of SMC contraction in maintaining aorta function. ^
Resumo:
Brain metastasis is resistant to chemotherapy while the leaky blood-brain-barrier in brain metastasis can not be the underlying reason. Metastatic tumor cells (“seed”) exploit the host microenvironment (“soil”) for survival advantages. Astrocytes which maintain the homeostasis of the brain microenvironment become reactive subsequent to brain damages and protect neurons from various injuries. We observed reactive astrocytes surrounding and infiltrating into brain metastasis in both clinical specimen and experimental animal model, thus raising a possibility that reactive astrocytes may protect tumor cells from cytotoxic chemotherapeutic drugs. ^ To test this hypothesis, we first generated an immortalized astrocyte cell line from H-2Kb-tsA58 mice. The immortal mouse astrocytes expressed specific markers including GFAP. Scanning electron microscopy demonstrated that astrocytes formed direct physical contact with tumor cells. Moreover, the expression of GFAP by astrocytes was up-regulated subsequent to co-culture with tumor cells, indicating that the co-culture of astrocytes and tumor cells may serve as a model to recapitulate the pathophysiological situation of brain metastasis. ^ In co-culture, astrocytes dramatically reduced apoptosis of tumor cells produced by various chemotherapeutic drugs. This protection effect was not because of culturing cells from different species since mouse fibroblasts did not protect tumor cells from chemotherapy. Furthermore, the protection by astrocytes was completely dependent on a physical contact. ^ Gap junctional communication (GJC) served as this physical contact. Tumor cells and astrocytes both expressed the major component of gap junctional channel—connexin 43 and formed functional GJC as evidenced by the “dye transfer” assay. The blockage of GJC between tumor cells and astrocytes by either specific chemical blocker carbenoxolone (CBX) or by genetically knocking down connexin 43 on astrocytes reversed the chemo-protection. ^ Calcium was the signal molecule transmitted through GJC that rescued tumor cells from chemotherapy. Accumulation of cytoplasmic calcium preceded the progress of apoptosis in tumor cells treated with chemotherapeutic drugs. Furthermore, chelation of accumulated cytoplasmic calcium inhibited the apoptosis of tumor cells treated with chemotherapeutic drugs. Most importantly, astrocytes could “shunt” the accumulated cytoplasmic calcium from tumor cells (treated with chemotherapeutic drug) through GJC. We also used gene expression micro-array to investigate global molecular consequence of tumor cells forming GJC with astrocytes. The data demonstrated that astrocytes (but not fibroblasts), through GJC, up-regulated the expressions of several well known survival genes in tumor cells. ^ In summary, this dissertation provides a novel mechanism underlying the resistance of brain metastasis to chemotherapy, which is due to protection by astrocytes through GJC. Interference with the GJC between astrocytes and tumor cells holds great promise in sensitizing brain metastasis to chemotherapy and improving the prognosis for patients with brain metastasis. ^
Resumo:
Bladder cancer is the fourth most common cancer in men in the United States. There is compelling evidence supporting that genetic variations contribute to the risk and outcomes of bladder cancer. The PI3K-AKT-mTOR pathway is a major cellular pathway involved in proliferation, invasion, inflammation, tumorigenesis, and drug response. Somatic aberrations of PI3K-AKT-mTOR pathway are frequent events in several cancers including bladder cancer; however, no studies have investigated the role of germline genetic variations in this pathway in bladder cancer. In this project, we used a large case control study to evaluate the associations of a comprehensive catalogue of SNPs in this pathway with bladder cancer risk and outcomes. Three SNPs in RAPTOR were significantly associated with susceptibility: rs11653499 (OR: 1.79, 95%CI: 1.24–2.60), rs7211818 (OR: 2.13, 95%CI: 1.35–3.36), and rs7212142 (OR: 1.57, 95%CI: 1.19–2.07). Two haplotypes constructed from these 3 SNPs were also associated with bladder cancer risk. In combined analysis, a significant trend was observed for increased risk with an increase in the number of unfavorable genotypes (P for trend<0.001). Classification and regression tree analysis identified potential gene-environment interactions between RPS6KA5 rs11653499 and smoking. In superficial bladder cancer, we found that PTEN rs1234219 and rs11202600, TSC1 rs7040593, RAPTOR rs901065, and PIK3R1 rs251404 were significantly associated with recurrence in patients receiving BCG. In muscle invasive and metastatic bladder cancer, AKT2 rs3730050, PIK3R1 rs10515074, and RAPTOR rs9906827 were associated with survival. Survival tree analysis revealed potential gene-gene interactions: patients carrying the unfavorable genotypes of PTEN rs1234219 and TSC1 rs704059 exhibited a 5.24-fold (95% CI: 2.44–11.24) increased risk of recurrence. In combined analysis, with the increasing number of unfavorable genotypes, there was a significant trend of higher risk of recurrence and death (P for trend<0.001) in Cox proportional hazard regression analysis, and shorter event (recurrence and death) free survival in Kaplan-Meier estimates (P log rank<0.001). This study strongly suggests that genetic variations in PI3K-AKT-mTOR pathway play an important role in bladder cancer development. The identified SNPs, if validated in further studies, may become valuable biomarkers in assessing an individual's cancer risk, predicting prognosis and treatment response, and facilitating physicians to make individualized treatment decisions. ^
Resumo:
The 3-hydroxy-3methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, can achieve significant reductions in plasma low-density lipoprotein (LDL)-cholesterol levels. Experimental and clinical evidence now shows that some statins interfere with formation of atherosclerotic lesions independent of their hypolipidemic properties. Vulnerable plaque rupture can result in thrombus formation and artery occlusion; this plaque deterioration is responsible for most acute coronary syndromes, including myocardial infarction (MI), unstable angina, and coronary death, as well as coronary heart diseaseequivalent non-hemorrhagic stroke. Inhibition of HMG-CoA reductase has potential pleiotropic effects other than lipid-lowering, as statins block mevalonic acid production, a precursor to cholesterol and numerous other metabolites. Statins' beneficial effects on clinical events may also thus involve nonlipid-related mechanisms that modify endothelial function, inflammatory responses, plaque stability, and thrombus formation. Aspirin, routinely prescribed to post-MI patients as adjunct therapy, may potentiate statins beneficial effects, as aspirin does not compete metabolically with statins but acts similarly on atherosclerotic lesions. Common functions of both medications include inhibition of platelet activity and aggregation, reduction in atherosclerotic plaque macrophage cell count, and prevention of atherosclerotic vessel endothelial dysfunction. The Cholesterol and Recurrent Events (CARE) trial provides an ideal population in which to examine the combined effects of pravastatin and aspirin. Lipid levels, intermediate outcomes, are examined by pravastatin and aspirin status, and differences between the two pravastatin groups are found. A modified Cox proportional-hazards model with aspirin as a time-dependent covariate was used to determine the effect of aspirin and pravastatin on the clinical cardiovascular composite endpoint of coronary heart disease death, recurrent MI or stroke. Among those assigned to pravastatin, use of aspirin reduced the composite primary endpoint by 35%; this result was similar by gender, race, and diabetic status. Older patients demonstrated a nonsignificant 21% reduction in the primary outcome, whereas the younger had a significant reduction of 43% in the composite primary outcome. Secondary outcomes examined include coronary artery bypass graft (38% reduction), nonsurgical bypass, peripheral vascular disease, and unstable angina. Pravastatin and aspirin in a post-MI population was found to be a beneficial combination that seems to work through lipid and nonlipid, anti-inflammatory mechanisms. ^
Resumo:
Background. Research into methods for recovery from fatigue due to exercise is a popular topic among sport medicine, kinesiology and physical therapy. However, both the quantity and quality of studies and a clear solution of recovery are lacking. An analysis of the statistical methods in the existing literature of performance recovery can enhance the quality of research and provide some guidance for future studies. Methods: A literature review was performed using SCOPUS, SPORTDiscus, MEDLINE, CINAHL, Cochrane Library and Science Citation Index Expanded databases to extract the studies related to performance recovery from exercise of human beings. Original studies and their statistical analysis for recovery methods including Active Recovery, Cryotherapy/Contrast Therapy, Massage Therapy, Diet/Ergogenics, and Rehydration were examined. Results: The review produces a Research Design and Statistical Method Analysis Summary. Conclusion: Research design and statistical methods can be improved by using the guideline from the Research Design and Statistical Method Analysis Summary. This summary table lists the potential issues and suggested solutions, such as, sample size calculation, sports specific and research design issues consideration, population and measure markers selection, statistical methods for different analytical requirements, equality of variance and normality of data, post hoc analyses and effect size calculation.^
Resumo:
A rare familial cancer syndrome involving childhood brain tumors (CBT), breast cancer, sarcomas and an array of other tumors has been described (Li and Fraumeni 1969, 1975, 1982, 1987). A survey of CBT identified through the Connnecticut Tumor Registry in 1984 revealed a high frequency of CBT, leukemia and other childhood cancer in siblings of CBT patients (Farwell and Flannery, 1984). Other syndromes such as neurofibromatosis and nevoid basal cell carcinoma syndrome have also been associated with CBT; however, no systematic family studies have been conducted to determine the extent to which cancer aggregates in family members of CBT patients. This family study was designed to determine the frequency of cancer aggregation overall or at specific sites, to determine the frequency of known or potentially hereditary syndromes in families of CBT patients, and to determine a genetic model to characterize familial cancer syndromes and to identify specific kindreds to which such a model(s) might apply. This study includes 244 confirmed CBT patients referred to the University of Texas M. D. Anderson Cancer Center between the years 1944 and 1983, diagnosed under the age of 15 years and resident in the U.S. or Canada. Family histories were obtained on the proband's first (parents, siblings and offspring) and second degree (proband's aunts, uncles and grandparents) relatives following sequential sampling scheme rules. To determine if cancer aggregates in families, we compared the cancer experience in the population to that expected in the general population using Connecticut Tumor Registry calendar year, age, race and sex-specific rates. The standardized incidence ratio (SIR) for cancer overall was 0.91 (41 observed (O) and 44.94 expected (E); 95% Confidence Interval (CI) = 0.65-1.24). We observed a significant excess of colon cancer among the proband's first degree relatives (O/E = 5/1.64; 95% CI = 1.01-7.65), in particular those under age 45 year. Segregation analysis showed evidence for multifactorial inheritance in the small percentage (N = 5) of the families. ^
Resumo:
Among Mexican Americans, the second largest minority group in the United States, the prevalence of gallbladder disease is markedly elevated. Previous data from both genetic admixture and family studies indicate that there is a genetic component to the occurrence of gallbladder disease in Mexican Americans. However, prior to this thesis no formal genetic analysis of gallbladder disease had been carried out nor had any contributing genes been identified.^ The results of complex segregation analysis in a sample of 232 Mexican American pedigrees documented the existence of a major gene having two alleles with age- and gender-specific effects influencing the occurrence of gallbladder disease. The estimated frequency of the allele increasing susceptibility was 0.39. The lifetime probabilities that an individual will be affected by gallbladder disease were 1.0, 0.54, and 0.00 for females of genotypes "AA", "Aa", and "aa", respectively, and 0.68, 0.30, and 0.00 for males, respectively. This analysis provided the first conclusive evidence for the existence of a common single gene having a large effect on the occurrence of gallbladder disease.^ Human cholesterol 7$\alpha$-hydroxylase is the rate-limiting enzyme in bile acid synthesis. The results of an association study in both a random sample and a matched case/control sample showed that there is a significant association between cholesterol 7$\alpha$-hydroxylase gene variation and the occurrence of gallbladder disease in Mexican Americans males but not in females. These data have implicated a specific gene, 7$\alpha$-hydroxylase, in the etiology of gallbladder disease in this population.^ Finally, I asked whether the inferred major gene from complex segregation analysis is genetically linked to the cholesterol 7$\alpha$-hydroxylase gene. Three pedigrees predicted to be informative for linkage analysis by virtue of supporting the major gene hypothesis and having parents with informative genotypes and multiple offspring were selected for this linkage analysis. In each of these pedigrees, the recombination fractions maximized at 0 with a positive, albeit low, LOD score. The results of this linkage analysis provide preliminary and suggestive evidence that the cholesterol 7$\alpha$-hydroxylase gene and the inferred gallbladder disease susceptibility gene are genetically linked. ^