30 resultados para therapeutic target


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lung cancer is the leading cause of cancer deaths worldwide. The development of improved systemic therapy is needed for the most common form of the disease, non-small cell lung cancer (NSCLC). This will depend on the identification of valid molecular targets. Recent studies point to the receptor tyrosine kinase EphA2 as a novel therapeutic target. Overexpression of EphA2 has been demonstrated in a number of epithelial cancers, and its expression has been associated with more severe disease. Regulation of EphA2 in cancer is poorly understood. Recently, regulation of EphA2 by EGFR and KRAS has been reported in a number of in vitro models, but no examination of this relationship has been undertaken in patient tumors. Because of the established importance of EGFR and KRAS in NSCLC, we have investigated the relationship between these mutations and EphA2 in NSCLC patient tissues and cell lines. The significance of Epha2 expression was further examined by testing for correlation with survival, metastases, histology, and smoking status in patient tissues, and tumor cell proliferation and migration in vitro. EphA2 expression was analyzed in by immunohistochemistry in tissue microarray (TMA) format utilizing surgically resected lung cancer specimens. EGFR and KRAS mutation status was determined for the majority of specimens. EphA2 expression was detected in >90% of NSCLC tumors. High EphA2 expression was associated with decreased time to recurrence and metastases, and predicted poorer progression free and overall survival. Expression of EphA2 was positively correlated with activated EGFR and with KRAS mutation. Expression of EphA2 was also positively correlated with a history of smoking. There was no association between gender or histology and EphA2 expression. In H322 cells, activation of EGFR or KRAS resulted in an increase in EphA2 protein expression. Downregulation of EphA2 resulted in decreased proliferation in a clonal growth assay, and inhibited migration in a wound healing assay, in a panel of cell lines. The decrease in proliferation correlated with a transient decrease in the levels of phospho-ERK, a downstream effector of EGFR and KRAS. Based on these data, the potential of EphA2 as a therapeutic target for NSCLC should be further investigated. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Human lipocalin 2 is described as the neutrophil gelatinase-associated lipocalin (NGAL). The lipocalin 2 gene encodes a small, secreted glycoprotein that possesses a variety of functions, of which the best characterized function is organic iron binding activity. Elevated NGAL expression has been observed in many human cancers including breast, colorectal, pancreatic and ovarian cancers. I focused on the characterization of NGAL function in chronic myelogenous leukemia (CML) and breast cancer. Using the leukemic xenograft mouse model, we demonstrated that over-expression of NGAL in K562 cells, a leukemic cell line, led to a higher apoptotic rate and an atrophy phenotype in the spleen of inoculated mice compared to K562 cells alone. These results indicate that NGAL plays a primary role in suppressing hematopoiesis by inducing apoptosis within normal hematopoietic cells. In the breast cancer project, we analyzed two microarray data sets of breast cancer cell lines ( n = 54) and primary breast cancer samples (n = 318), and demonstrated that high NGAL expression is significantly correlated with several tumor characteristics, including negative estrogen receptor (ER) status, positive HER2 status, high tumor grade, and lymph node metastasis. Ectopic NGAL expression in non-aggressive (ZR75.1 and MCF7) cells led to aggressive tumor phenotypes in vitro and in vivo. Conversely, knockdown of NGAL expression in various breast cancer cell lines by shRNA lentiviral infection significantly decreased migration, invasion, and metastasis activities of tumor cells both in vitro and in vivo . It has been previously reported that transgenic mice with a mutation in the region of trans-membrane domain (V664E) of HER2 develop mammary tumors that progress to lung metastasis. However, we observed that genetic deletion of the 24p3 gene, a mouse homolog of NGAL, in HER2 transgenic mice by breeding with 24p3-null mice resulted in a significant delay of mammary tumor formation and reduction of lung metastasis. Strikingly, we also found that treatment with affinity purified 24p3 antibodies in the 4T1 breast cancer mice strongly reduced lung metastasis. Our studies provide evidence that NGAL plays a critical role in breast cancer development and progression, and thus NGAL has potential as a new therapeutic target in breast cancer.^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epidermal Growth Factor Receptor (EGFR) overexpression occurs in about 90% of Head and Neck Squamous Cell Carcinoma (HNSCC) cases. Aberrant EGFR signaling has been implicated in the malignant features of HNSCC. Thus, EGFR appears to be a logical therapeutic target with increased tumor specificity for the treatment of HNSCC. Erlotinib, a small molecule tyrosine kinase inhibitor, specifically inhibits aberrant EGFR signaling in HNSCC. Only a minority of HNSCC patients were able to derive a substantial clinical benefit from erlotinib. ^ This dissertation identifies Epithelial to Mesenchymal Transition (EMT) as the biological marker that distinguishes EGFR-dependent (erlotinib-sensitive) tumors from the EGFR-independent (erlotinib-resistant) tumors. This will allow us to prospectively identify the patients who are most likely to benefit from EGFR-directed therapy. More importantly, our data identifies the transcriptional repressor DeltaEF1 as the mesenchymal marker that controls EMT phenotype and resistance to erlotinib in human HNSCC lines. si-RNA mediated knockdown of DeltaEF1 in the erlotinib-resistant lines resulted in reversal of the mesenchymal phenotype to an epithelial phenotype and significant increase in sensitivity to erlotinib. ^ DeltaEF1 represses the expression of the epithelial markers by recruiting HDACs to chromatin. This observation allows us to translate our findings into clinical application. To test whether the transcriptional repression by DeltaEF1 underlines the mechanism responsible for erlotinib resistance, erlotinib-resistant lines were treated with an HDAC inhibitor (SAHA) followed by erlotinib. This resulted in a synergistic effect and substantial increase in sensitivity to erlotinib in the resistant cell lines. Thus, combining an HDAC inhibitor with erlotinib represents a novel promising pharmacologic strategy for reversing resistance to erlotinib in HNSCC patients. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advances in therapy for colorectal cancer have been hampered by development of resistance to chemotherapy. The Src family of protein tyrosine kinases has been associated with colorectal cancer development and progression. Activation of the prototypic member of the family, Src, occurs in advanced colorectal cancer and is associated with a worse outcome. This work tests the hypotheses that Src activation contributes to chemoresistance in some colon tumors and that this resistance can be overcome by use of Src inhibitors. The aims of the proposal were to (1) determine if constitutive Src activation is sufficient to induce oxaliplatin resistance; (2) evaluate the role of reactive oxygen species (ROS) in the activation of Src after oxaliplatin treatment; (3) determine the frequency of Src activation in liver metastases after oxaliplatin treatment; and (4) evaluate the safety, preliminary efficacy, and pharmacodynamics of the combination of dasatinib with oxaliplatin-based therapy in patients with metastatic colorectal cancer. ^ Using a panel of colon cancer cell lines and murine models, I demonstrate that administration of oxaliplatin, a commonly utilized chemotherapy for colorectal cancer, results in an increased activation of Src. The activation occurs acutely in some, but not all, colorectal carcinoma cell lines. Cell lines selected for oxaliplatin resistance are further increased in Src activity. Treatment of cell lines with dasatinib, a non-selective pharmacologic inhibitor of the Src family kinases synergistically killed some, but not all cell lines. Cell lines with the highest acute activation of Src after oxaliplatin administration were the most sensitive to the combination therapy. Previous work demonstrated that siRNA to Src increased sensitivity to oxaliplatin, suggesting that the effects of dasatinib are primarily due to its ability to inhibit Src in these cell lines. ^ To examine the mechanism underlying these results, I examined the effects of reactive oxygen species (ROS), as previous studies have demonstrated that platinum chemotherapeutics result in intracellular oxidative stress. I demonstrated that oxaliplatin-induced reactive oxygen species were higher in the cell lines with Src activation, relative to those in which Src was not activated. This oxaliplatin-induced Src activation was blocked by the administration of anti-oxidants, thereby demonstrating that synergistic killing between dasatinib and oxaliplatin was associated with the ability of the latter to generate ROS. ^ In a murine model of colorectal cancer metastasis to the liver, the combination of dasatinib and oxaliplatin was more effective in reducing tumor volume than either agent alone. However, when oxaliplatin resistant cell lines were treated with a combination of oxaliplatin and AZD0530, an inhibitor in the clinic with increased specificity for Src, no additional benefit was seen, although Src was activated by oxaliplatin and Src substrates were inhibited. The indolent growth of oxaliplatin-resistant cells, unlike the growth of oxaliplatin resistant tumors in patients, precludes definitive interpretation of these results. ^ To further explore Src activation in patients with oxaliplatin exposure and resistance, an immunohistochemistry analysis of tumor tissue from resected liver metastases of colorectal cancer was performed. Utilizing a tissue microarray, staining for phosphorylated Src and FAK demonstrated strong staining of tumor relative to stromal and normal liver. In patients recently exposed to oxaliplatin, there was increased FAK activation, supporting the clinical relevance of the prior preclinical studies. ^ To pursue the potential clinical benefit of the combination of Src inhibition with oxaliplatin, a phase IB clinical trial was completed. Thirty patients with refractory metastatic colorectal cancer were treated with a combination of 5-FU, oxaliplatin, an epidermal-growth factor receptor monoclonal antibody, and dasatinib. The recommended phase II dose of dasatinib was established, and toxicities were quantified. Pharmacodynamic studies demonstrated increased phosphorylation of the Src substrate paxillin after dasatinib therapy. Tumor biopsies were obtained and Src expression levels were quantitated. Clinical benefit was seen with the combination, including a response rate of 20% and disease control rate of 56%, prompting a larger clinical study. ^ In summary, although Src is constitutively activated in metastatic colorectal cancer, administration of oxaliplatin chemotherapy can further increase its activity, through a reactive oxygen species dependent manner. Inhibition of Src in combination with oxaliplatin provides additional benefit in vitro, in preclinical animal models, and in the clinic. Further study of Src inhibition in the clinic and identification of predictive biomarkers of response will be required to further advance this promising therapeutic target. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellular therapies, as neuronal progenitor (NP) cells grafting, are promising therapies for patients affected with neurodegenerative diseases like Creutzfeldt-Jakob Disease (CJD). At this time there is no effective treatment or cure for CJD. The disease is inevitably fatal and affected people usually die within months of the appearance of the first clinical symptoms. Compelling evidence indicate that the hallmark event in the disease is the conversion of the normal prion protein (termed PrPC) into the disease-associated, misfolded form (called PrPSc). Thus, a reasonable therapeutic target would be to prevent PrP misfolding and prion replication. This strategy has been applied with poor results since at the time of clinical intervention substantial brain damage has been done. It seems that a more effective treatment aimed at patients with established symptoms of CJD would need to stop further brain degeneration or even recover some of the previously lost brain tissue. The most promising possibility to recover brain tissue is the use of NPs that have the potential to replenish the nerve cells lost during the early stages of the disease. Advanced cellular therapies, beside their potential for cell replacement, might be used as biomaterials for drug delivery in order to stimulate cell survival or the resolution the disease. Also, implanted cells can be genetically manipulated to correct abnormalities causing disease or to make them more resistant to the toxic microenvironments present in damaged tissue. In recent years cell engineering has been within the scope of the scientific and general community after the development of technologies able to “de-differentiate” somatic cells into induced-pluripotent stem (IPS) cells. This new tool permits the use of easy-to-reach cells like skin or blood cells as a primary material to obtain embryonic stem-like cells for cellular therapies, evading all ethical issues regarding the use of human embryos as a source of embryonic stem cells. The complete work proposes to implant IPS-derived NP cells into the brain of prion-infected animals to evaluate their therapeutic potential. Since it is well known that the expression of prion protein in the cell membrane is necessary for PrPSc mediated toxicity, we also want to determine if NPs lacking the prion protein have better survival rates once implanted into sick animals. The main objective of this work is to develop implantable neural precursor from IPS coming from animals lacking the prion protein. Specific aim 1: To develop and characterize cellular cultures of IPS cells from prp-/- mice. Fibroblasts from prp-/- animals will be reprogrammed using the four Yamanaka factors. IPS colonies will be selected and characterized by immunohistochemistry for markers of pluripotency. Their developmental capabilities will be evaluated by teratoma and embryoid body formation assays. Specific aim 2: To differentiate IPS cells to a neuronal lineage. IPS cells will be differentiated to a NP stage by the use of defined media culture conditions. NP cells will be characterized by their immunohistochemical profile as well as by their ability to differentiate into neuronal cells. Specific aim 3: Cellular labeling of neuronal progenitors cells for in vitro traceability. In order to track the cells once implanted in the host brain, they will be tagged with different methods such as lipophilic fluorescent tracers and transduction with GFP protein expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many lines of clinical and experimental evidence indicate a viral role in carcinogenesis (1-6). Our access to patient plasma, serum, and tissue samples from invasive breast cancer (N=19), ductal carcinoma in situ (N=13), malignant ovarian cancer (N=12), and benign ovarian tumors (N=9), via IRB-approved and informed consent protocols through M.D. Anderson Cancer Center, as well as normal donor plasmas purchased from Gulf Coast Regional Blood Center (N=6), has allowed us to survey primary patient blood and tissue samples, healthy donor blood from the general population, as well as commercially available human cell lines for the presence of human endogenous retrovirus K (HERV-K) Env viral RNA (vRNA), protein, and viral particles. We hypothesize that HERV-K proteins are tumor-associated antigens and as such can be profiled and targeted in patients for diagnostic and therapeutic purposes. To test this hypothesis, we employed isopycnic ultracentrifugation, a microplate-based reverse transcriptase enzyme activity assay, reverse transcription – polymerase chain reaction (RT-PCR), cDNA sequencing, SDS-PAGE and western blotting, immunofluorescent staining, confocal microscopy, and transmission electron microscopy to evaluate v HERV-K activation in cancer. Data from large numbers of patients tested by reverse transcriptase activity assay were analyzed statistically by t-test to determine the potential use of this assay as a diagnostic tool for cancer. Significant reverse transcriptase enzyme activity was detected in 75% of ovarian cancer patients, 53.8% of ductal carcinoma in situ patient, and 42.1% of invasive breast cancer patient samples. Only 11.1% of benign ovarian patient and 16.7% of normal donor samples tested positive. HERV-K Env vRNA, or Env SU were detected in the majority of cancer types screened, as demonstrated by the results shown herein, and were largely absent in normal controls. These findings support our hypothesis that the presence of HERV-K in patient blood circulation is an indicator of cancer or pre-malignancy in vivo, that the presence of HERV-K Env on tumor cell surfaces is indicative of malignant phenotype, and that HERV-K Env is a tumor-associated antigen useful not only as a diagnostic screening tool to predict patient disease status, but also as an exploitable therapeutic target for various novel antibody-based immunotherapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Uterine leiomyosarcoma (ULMS) is an aggressive malignancy characterized by marked chemoresistance, frequent relapses, and poor outcome. Despite efforts to improve survival over the past several decades, only minimal advances have been made. Hence, there is an urgent and unmet need for better understanding of the molecular deregulations that underlay ULMS and development of more effective therapeutic strategies. This work identified several common deregulations in a large (n=208) tissue microarray of ULMS compared to GI smooth muscle, myometrium, and leiomyoma controls. Our results suggest that significant loss of smooth muscle and gynecological differentiation markers is common in ULMS, a finding that could help render improved ULMS diagnosis, especially for advanced disease. Similarly to reports in other malignancies, we found that several cancer-related proteins were differentially expressed; these could be useful together as biomarkers for ULMS. Notably, we identified significant upregulation and overexpression of the mTOR pathway in ULMS, examined the possible contribution of tyrosine kinase receptor deregulation promoting mTOR activation, and unraveled a role for pS6RP and p4EBP1 as molecular disease prognosticators. The significance of mTOR activation in ULMS and its potential as a therapeutic target were further investigated. Rapamycin abrogated ULMS cell growth and cell cycle progression in vitro but induced only sight growth delay in vivo. Given that effective mTOR therapies likely require combination mTOR blockade with inhibition of other targets, coupled with recent observations suggesting that Aurora A kinase (Aurk A) deregulations commonly occur in ULMS, the preclinical impact of dually targeting both pathways was evaluated. Combined therapy with rapamycin (an mTORC1 inhibitor) and MLN8237 (an investigational Aurk A inhibitor) profoundly and synergistically abrogated ULMS growth in vitro. Interestingly, the superior effects were noted only when MLN8237 was pre-administered. This novel therapeutic combination and scheduling regimen resulted in marked tumor growth inhibition in vivo. Together, these data support further exploration of dual mTOR and Aurk A blockade for the treatment of human ULMS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prostate cancer (PCa) is one of the leading malignancies affecting men in the Western world. Although tremendous effort has been made towards understanding PCa development and developing clinical treatments in the past decades, the exact mechanisms of PCa are still not clearly understood. Emerging evidence has postulated that a population of stem cell-like cells inside a tumor, termed ‘cancer stem cells (CSCs)’, may be the cells responsible for tumor initiation, progression, recurrence, metastasis and therapy resistance. Like CSC studies in other cancer types, it has been reported that PCa also contains CSCs. However, there remain several unresolved questions that need to be clarified. First, the relationship between prostate CSCs (PCSCs) and therapy resistance (chemo- and radio-) is not known. Herein, we have found that not all CSCs are drug-tolerant, and not all drug-tolerant cells are CSCs. Second, whether primary human PCa (HPCa) actually contain PCSCs remains unclear, due to the well-known fact that we have yet to establish a reliable assay system that can reproducibly and faithfully reconstitute tumor regeneration from single HPCa cells. Herein, after utilizing more than 114 HPCa samples we have provided evidence that immortalized bone marrow-derived stromal cells (Hs5) can help dissociated HPCa cells generate undifferentiated tumors in immunodeficient NOD/SCID-IL2Rγ-/- mice, and the undifferentiated PCa cells seem to have a survival advantage to generate tumors. Third, the evolution of PCa from androgen dependent to the lethally castration resistant (CRPC) stage remains enigmatic, and the cells responsible for CRPC development have not been identified. Herein, we have found a putative cell population, ALDH+CD44+α2β1+ PCa cells that may represent a cell-of-origin for CRPC. Taken together, our work has improved our understanding of PCSC properties, possibly highlighting a potential therapeutic target for CRPC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Each year, 150 million people sustain a Traumatic Brain Injury (TBI). TBI results in life-long cognitive impairments for many survivors. One observed pathological alteration following TBI are changes in glucose metabolism. Altered glucose uptake occurs in the periphery as well as in the nervous system, with an acute increase in glucose uptake, followed by a prolonged metabolic suppression. Chronic, persistent suppression of brain glucose uptake occurs in TBI patients experiencing memory loss. Abberant post-injury activation of energy-sensing signaling cascades could result in perturbed cellular metabolism. AMP-activated kinase (AMPK) is a kinase that senses low ATP levels, and promotes efficient cell energy usage. AMPK promotes energy production through increasing glucose uptake via glucose transporter 4 (GLUT4). When AMPK is activated, it phosphorylates Akt Substrate of 160 kDa (AS160), a Rab GTPase activating protein that controls Glut4 translocation. Additionally, AMPK negatively regulates energy-consumption by inhibiting protein synthesis via the mechanistic Target of Rapamycin (mTOR) pathway. Given that metabolic suppression has been observed post-injury, we hypothesized that activity of the AMPK pathway is transiently decreased. As AMPK activation increases energy efficiency of the cell, we proposed that increasing AMPK activity to combat the post-injury energy crisis would improve cognitive outcome. Additionally, we expected that inhibiting AMPK targets would be detrimental. We first investigated the role of an existing state of hyperglycemia on TBI outcome, as hyperglycemia correlates with increased mortality and decreased cognitive outcome in clinical studies. Inducing hyperglycemia had no effect on outcome; however, we discovered that AMPK and AS160 phosphorylation were altered post-injury. We conducted vii work to characterize this period of AMPK suppression and found that AMPK phosphorylation was significantly decreased in the hippocampus and cortex between 24 hours and 3 days post-injury, and phosphorylation of its downstream targets was consistently altered. Based on this period of observed decreased AMPK activity, we administered an AMPK activator post-injury, and this improved cognitive outcome. Finally, to examine whether AMPK-regulated target Glut4 is involved in post-injury glucose metabolism, we applied an inhibitor and found this treatment impaired post-injury cognitive function. This work is significant, as AMPK activation may represent a new TBI therapeutic target.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inflammatory breast cancer (IBC) is the most insidious form of locally advanced disease. Although rare and less than 2% of all breast cancer, IBC is responsible for up to 10% of all breast cancer deaths. Despite the name, very little is known about the role of inflammation or immune mediators in IBC. Therefore, we analyzed blood samples from IBC patients and non-IBC patients, as well as healthy donor controls to establish an IBC-specific profile of peripheral blood leukocyte phenotype and function of T cells and dendritic cells and serum inflammatory cytokines. Emerging evidence suggests that host factors in the microenviromement may interact with underlying IBC genetics to promote the aggressive nature of the tumor. An integral part of the metastatic process involves epithelial to mesenchymal transition (EMT) where primary breast cancer cells gain motility and stem cell-like features that allow distant seeding. Interestingly, the IBC consortium microarray data found no clear evidence for EMT in IBC tumor tissues. It is becoming increasingly evident that inflammatory factors can induce EMT. However, it is unknown if EMT-inducing soluble factors secreted by activated immune cells in the IBC microenvironment canπ account for the absence of EMT in studies of the tumor cells themselves. We hypothesized that soluble factors from immune cells are capable of inducing EMT in IBC. We tested the ability of immune conditioned media to induce EMT in IBC cells. We found that soluble factors from activated immune cells are able to induce the expression of EMT-related factors in IBC cells along with increased migration and invasion. Specifically, the pro-inflammatory cytokines TNF-α, IL-6 and TGF-β were able to induce EMT and blocking these factors in conditioned media abated the induction of EMT. Surprisingly, unique to IBC cells, this process was related to increased levels of E-cadherin expression and adhesion, reminiscent of the characteristic tightly packed tumor emboli seen in IBC samples. This data offers insight into the unique pathology of IBC by suggesting that tumor immune interactions in the tumor microenvironment contribute to the aggressive nature of IBC implying that immune induced inflammation can be a novel therapeutic target. Specifically, we showed that soluble factors secreted by activated immune cells are capable of inducing EMT in IBC cells and may mediate the persistent E-cadherin expression observed in IBC. This data suggests that immune mediated inflammation may contribute to the highly aggressive nature of IBC and represents a potential therapeutic target that warrants further investigation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was designed to investigate the protective effect of the heart-protecting musk pill (HMP) on inflammatory injury of kidney from spontaneously hypertensive rat (SHR). Male SHRs aged 4 weeks were divided into SHR model group, HMP low-dosage group (13.5 mg/kg), and HMP high-dosage group (40 mg/kg). Age-matched Wistar-Kyoto rats were used as normal control. All rats were killed at 12 weeks of age. Tail-cuff method and enzyme-linked immunosorbent assay were used to determine rat systolic blood pressure and angiotensin II (Ang II) contents, respectively. Renal inflammatory damage was evaluated by the following parameters: protein expressions of inflammatory cytokines, carbonyl protein contents, nitrite concentration, infiltration of monocytes/macrophages in interstitium and glomeruli, kidney pathological changes, and excretion rate of urinary protein. HMP did not prevent the development of hypertension in SHR. However, this Chinese medicinal compound decreased renal Ang II content. Consistent with the change of renal Ang II, all the parameters of renal inflammatory injury were significantly decreased by HMP. This study indicates that HMP is a potent suppressor of renal inflammatory damage in SHR, which may serve as a basis for the advanced preventive and therapeutic investigation of HMP in hypertensive nephropathy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing attention has been given to the connection between metabolism and cancer. Under aerobic conditions, normal cells predominantly use oxidative phosphorylation for ATP generation. In contrast, increase of glycolytic activity has been observed in various tumor cells, which is known as Warburg effect. Cancer cells, compared to normal cells, produce high levels of Reactive Oxygen Species (ROS) and hence are constantly under oxidative stress. Increase of oxidative stress and glycolytic activity in cancer cells represent major biochemical alterations associated with malignant transformation. Despite prevalent upregulation of ROS production and glycolytic activity observed in various cancer cells, underlying mechanisms still remain to be defined. Oncogenic signals including Ras has been linked to regulation of energy metabolism and ROS production. Current study was initiated to investigate the mechanism by which Ras oncogenic signal regulates cellular metabolism and redox status. A doxycycline inducible gene expression system with oncogenic K-ras transfection was constructed to assess the role played by Ras activation in any given studied parameters. Data obtained here reveals that K-ras activation directly caused mitochondrial dysfunction and ROS generation, which appeared to be mechanistically associated with translocation of K-ras to mitochondria and the opening of the mitochondrial permeability transition pore. K-ras induced mitochondrial dysfunction led to upregulation of glycolysis and constitutive activation of ROS-generating NAD(P)H Oxidase (NOX). Increased oxidative stress, upregulation of glycolytic activity, and constitutive activated NOX were also observed in the pancreatic K-ras transformed cancer cells compared to their normal counterparts. Compared to non-transformed cells, the pancreatic K-ras transformed cancer cells with activated NOX exhibited higher sensitivity to capsaicin, a natural compound that appeared to target NOX and cause preferential accumulation of oxidative stress in K-ras transformed cells. Taken together, these findings shed new light on the role played by Ras in the road to cancer in the context of oxidative stress and metabolic alteration. The mechanistic relationship between K-ras oncogenic signals and metabolic alteration in cancer will help to identify potential molecular targets such as NAD(P)H Oxidase and glycolytic pathway for therapeutic intervention of cancer development. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite having been identified over thirty years ago and definitively established as having a critical role in driving tumor growth and predicting for resistance to therapy, the KRAS oncogene remains a target in cancer for which there is no effective treatment. KRas is activated b y mutations at a few sites, primarily amino acid substitutions at codon 12 which promote a constitutively active state. I have found that different amino acid substitutions at codon 12 can activate different KRas downstream signaling pathways, determine clonogenic growth potential and determine patient response to molecularly targeted therapies. Computer modeling of the KRas structure shows that different amino acids substituted at the codon 12 position influences how KRas interacts with its effecters. In the absence of a direct inhibitor of mutant KRas several agents have recently entered clinical trials alone and in combination directly targeting two of the common downstream effecter pathways of KRas, namely the Mapk pathway and the Akt pathway. These inhibitors were evaluated for efficacy against different KRAS activating mutations. An isogenic panel of colorectal cells with wild type KRas replaced with KRas G12C, G12D, or G12V at the endogenous loci differed in sensitivity to Mek and Akt inhibition. In contrast, screening was performed in a broad panel of lung cell lines alone and no correlation was seen between types of activating KRAS mutation due to concurrent oncogenic lesions. To find a new method to inhibit KRAS driven tumors, siRNA screens were performed in isogenic lines with and without active KRas. The knockdown of CNKSR1 (CNK1) showed selective growth inhibition in cells with an oncogenic KRAS. The deletion of CNK1 reduces expression of mitotic cell cycle proteins and arrests cells with active KRas in the G1 phase of the cell cycle similar to the deletion of an activated KRas regardless of activating substitution. CNK1 has a PH domain responsible for localizing it to membrane lipids making KRas potentially amenable to inhibition with small molecules. The work has identified a series of small molecules capable of binding to this PH domain and inhibiting CNK1 facilitated KRas signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Triple-negative breast cancers (TNBC) are characterized by the lack of or reduced expression of the estrogen and progesterone receptors, and normal expression of the human epidermal growth factor receptor 2. The lack of a well-characterized target for treatment leaves only systemic chemotherapy as the mainstay of treatment. Approximately 60-70% of patients are chemosensitive, while the remaining majority does not respond. Targeted therapies that take advantage of the unique molecular perturbations found in triple-negative breast cancer are needed. The genes that are frequently amplified or overexpressed represent potential therapeutic targets for triple-negative breast cancer. The purpose of this study was to identify and validate novel therapeutic targets for triple-negative breast cancers. 681 genes showed consistent and highly significant overexpression in TNBC compared to receptor-positive cancers in 2 data sets. For two genes, 3 of the 4 siRNAs showed preferential growth inhibition in TNBC cells. These two genes were the low density lipoprotein receptor-related protein 8 (LRP8) and very low-density lipoprotein receptor (VLDLR). Exposure to their cognate ligands, reelin and apolipoprotein E isoform 4 (ApoE4), stimulated the growth of TNBC cells in vitro. Suppression of the expression of either LRP8 or VLDLR or exposure to RAP (an inhibitor of ligand binding to LRP8 and VLDLR) abolished this ligand-induced proliferation. High-throughput protein and metabolic arrays revealed that ApoE4 stimulation rescued TNBC cells from serum-starvation induced up-regulation of genes involved in lipid biosynthesis, increased protein expression of oncogenes involved in the MAPK/ERK and DNA repair pathways, and reduced the serum-starvation induction of biochemicals involved in oxidative stress response and glycolytic metabolism. shLRP8 MDA-MB-231 xenografts had reduced tumor volume, in comparison to parental and shCON xenografts. These results indicate that LRP8-APOE signaling confers survival advantages to TNBC tumors under reduced nutrient conditions and during cellular environmental stress. We revealed that the LRP8-APOE receptor-ligand system is overexpressed in human TNBC. We also demonstrated that this receptor system mediates a strong growth promoting and survival function in TNBC cells in vitro and helps to sustain the growth of MDA-MD-231 xenografts. We propose that inhibitors of LRP8-APOE signaling may be clinically useful therapeutic agents for triple-negative breast cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major goal of chemotherapy is to selectively kill cancer cells while minimizing toxicity to normal cells. Identifying biological differences between cancer and normal cells is essential in designing new strategies to improve therapeutic selectivity. Superoxide dismutases (SOD) are crucial antioxidant enzymes required for the elimination of superoxide (O2·− ), a free radical produced during normal cellular metabolism. Previous studies in our laboratory demonstrated that 2-methoxyestradiol (2-ME), an estradiol derivative, inhibits the function of SOD and selectively kills human leukemia cells without exhibiting significant cytotoxicity in normal lymphocytes. The present work was initiated to examine the biochemical basis for the selective anticancer activity of 2-ME. Investigations using two-parameter flow cytometric analyses and ROS scavengers established that O2·− is a primary and essential mediator of 2-ME-induced apoptosis in cancer cells. In addition, experiments using SOD overexpression vectors and SOD knockout cells found that SOD is a critical target of 2-ME. Importantly, the administration of 2-ME resulted in the selective accumulation of O 2·− and apoptosis in leukemia and ovarian cancer cells. The preferential activity of 2-ME was found to be due to increased intrinsic oxidative stress in these cancer cells versus their normal counterparts. This intrinsic oxidative stress was associated with the upregulation of the antioxidant enzymes SOD and catalase as a mechanism to cope with the increase in ROS. Furthermore, oxygen consumption experiments revealed that normal lymphocytes decrease their respiration rate in response to 2-ME-induced oxidative stress, while human leukemia cells seem to lack this regulatory mechanism. This leads to an uncontrolled production of O2·−, severe accumulation of ROS, and ultimately ROS-mediated apoptosis in leukemia cells treated with 2-ME. The biochemical differences between cancer and normal cells identified here provide a basis for the development of drug combination strategies using 2-ME with other ROS-generating agents to enhance anticancer activity. The effectiveness of such a combination strategy in killing cancer cells was demonstrated by the use of 2-ME with agents/modalities such as ionizing radiation and doxorubicin. Collectively, the data presented here strongly suggests that 2-ME may have important clinical implications for the selective killing of cancer cells. ^