23 resultados para structural magnetic resonance imaging (sMRI)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Longitudinal in vivo proton magnetic resonance spectroscopy (1H-MRS) and immunohistochemistry were performed to investigate the tissue degeneration in traumatically injured rat spinal cord rostral and caudal to the lesion epicenter. On 1H-MRS significant decreases in N-acetyl aspartate (NAA) and total creatine (Cr) levels in the rostral, epicenter, and caudal segments were observed by 14 days, and levels remained depressed up to 56 days post-injury (PI). In contrast, the total choline (Cho) levels increased significantly in all three segments by 14 days PI, but recovered in the epicenter and caudal, but not the rostral region, at 56 days PI. Immunohistochemistry demonstrated neuronal cell death in the gray matter, and reactive astrocytes and axonal degeneration in the dorsal, lateral, and ventral white-matter columns. These results suggest delayed tissue degeneration in regions both rostrally and caudally from the epicenter in the injured spinal cord tissue. A rostral-caudal asymmetry in tissue recovery was seen both on MRI-observed hyperintense lesion volume and the Cho, but not NAA and Cr, levels at 56 days PI. These studies suggest that dynamic metabolic changes take place in regions away from the epicenter in injured spinal cord.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Early diagnosis of Parkinson's disease (PD) is required to improve therapeutic responses. Indeed, a clinical diagnosis of resting tremor, rigidity, movement and postural deficiencies usually reflect >50% loss of the nigrostriatal system in disease. In a step to address this, quantitative diffusion tensor magnetic resonance imaging (DTI) was used to assess nigrostriatal degeneration in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication model of dopaminergic nigral degeneration. We now demonstrate increased average diffusion (p<0.005) and decreased fractional anisotropy (p<0.03) in the substantia nigra (SN) of 5- to 7-day MPTP-treated animals when compared to saline controls. Transverse diffusivity demonstrated the most significant differences (p < or = 0.002) and correlated with the numbers of SN dopaminergic neurons (r=-0.75, p=0.012). No differences were found in the striatum, corpus callosum, cerebral cortex, or ventricles. These results demonstrate that DTI may be used as a surrogate biomarker of nigral dopaminergic neuronal degeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis (MS) is the most common demyelinating disease affecting the central nervous system. There is no cure for MS and current therapies have limited efficacy. While the majority of individuals with MS develop significant clinical disability, a subset experiences a disease course with minimal impairment even in the presence of significant apparent tissue damage on magnetic resonance imaging (MRI). The current studies combined functional MRI and diffusion tensor imaging (DTI) to elucidate brain mechanisms associated with lack of clinical disability in patients with MS. Recent evidence has implicated cortical reorganization as a mechanism to limit the clinical manifestation of the disease. Functional MRI was used to test the hypothesis that non-disabled MS patients (Expanded Disability Status Scale ≤ 1.5) show increased recruitment of cognitive control regions (dorsolateral prefrontal and anterior cingulate cortex) while performing sensory, motor and cognitive tasks. Compared to matched healthy controls, patients increased activation of cognitive control brain regions when performing non-dominant hand movements and the 2-back working memory task. Using dynamic causal modeling, we tested whether increased cognitive control recruitment is associated with alterations in connectivity in the working memory functional network. Patients exhibited similar network connectivity to that of control subjects when performing working memory tasks. We subsequently investigated the integrity of major white matter tracts to assess structural connectivity and its relation to activation and functional integration of the cognitive control system. Patients showed substantial alterations in callosal, inferior and posterior white matter tracts and less pronounced involvement of the corticospinal tracts and superior longitudinal fasciculi (SLF). Decreased structural integrity within the right SLF in patients was associated with decreased performance, and decreased activation and connectivity of the cognitive control system when performing working memory tasks. These studies suggest that patient with MS without clinical disability increase cognitive control system recruitment across functional domains and rely on preserved functional and structural connectivity of brain regions associated with this network. Moreover, the current studies show the usefulness of combining brain activation data from functional MRI and structural connectivity data from DTI to improve our understanding of brain adaptation mechanisms to neurological disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We postulated that neuromuscular disuse results in deleteriously affected tissue-vascular fluid exchange processes and subsequently damages the important oxidative bioenergetic process of intramuscular lipid metabolism. The in-depth research reported in the literature is somewhat limited by the ex vivo nature and sporadic time-course characterization of disuse atrophy and recovery. Thus, an in vivo controlled, localized animal model of disuse atrophy was developed in one of the hindlimbs of laboratory rabbits (employing surgically implanted tetrodotoxin (TTX)-filled mini-osmotic pump-sciatic nerve superfusion system) and tested repeatedly with magnetic resonance (MR) throughout the 2-week period of temporarily induced disuse and during the recovery period (following explantation of the TTX-filled pump) for a period of 3 weeks. Controls consisted of saline/"sham"-implanted rabbit hindlimbs. The validity of this model was established with repeated electrophysiologic nerve conduction testing using a clinically appropriate protocol and percutaneously inserted small needle stimulating and recording electrodes. Evoked responses recorded from proximal (P) and distal (D) sites to the sciatic nerve cuff in the TTX-implanted group revealed significantly decreased (p $<$ 0.001) proximal-to-distal (P/D) amplitude ratios (as much as 50-70% below Baseline/pre-implanted and sham-implanted group values) and significantly increased (p $<$ 0.01) differential latency (PL-DL) values (as much as 1.5 times the pre- and sham-implanted groups). By Day 21 of recovery, observed P/D and PL-DL levels matched Baseline/sham-implemented levels. MRI-determined cross-sectional area (CSA) values of Baseline/pre-implanted, sham- or TTX-implanted, and recovering/explanted and the corresponding contralateral hindlimb tibialis anterior (TA) muscles normalized to tibial bone (TB) CSA (in TA/TB ratios) revealed that there was a significant decline (indicative of atrophic response) from pre- and sham-implanted controls by as much as 20% (p $<$ 0.01) at Day 7 and 50-55% (p $<$ 0.001) at Day 13 of TTX-implantation. In the non-implanted contralaterals, a significant increase (indicative of hypertrophic response) by as much as 10% (p $<$ 0.025) at Day 7 and 27% (p $<$ 0.001) at Day 13 + TTX was found. The induced atrophic/hypertrophic TA muscles were observed to be fully recovered by Day 21 post-explantation as evidenced by image TA/TB ratios. End-point biopsy results from a small group of rabbits revealed comprehensive atrophy of both Type I and Type II fibers, although the heterogeneity of the response supports the use of image-guided, volume-localized proton magnetic resonance spectroscopy (MRS) to noninvasively assess tissue-level metabolic changes. MRS-determined results of a 0.25cc volume of tissue within implanted limb TA muscles under resting/pre-ischemic, ischemic-stressed, and post-ischemic conditions at timepoints during and following disuse atrophy/recovery revealed significantly increased intramuscular spectral lipid levels, as much as 2-3 times (p $<$ 0.01) the Baseline/pre-implanted values at Day 7 and 6-7 times (p $<$ 0.001) at Day 13 + TTX, which approached normal levels (compared to pre- and sham-implanted groups) by Day 21 of post-explanation recovery. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging, with its exquisite soft tissue contrast, is an ideal modality for investigating spinal cord pathology. While conventional MRI techniques are very sensitive for spinal cord pathology, their specificity is somewhat limited. Diffusion MRI is an advanced technique which is a very sensitive and specific indicator of the integrity of white matter tracts. Diffusion imaging has been shown to detect early ischemic changes in white matter, while conventional imaging demonstrates no change. By acquiring the complete apparent diffusion tensor (ADT), tissue diffusion properties can be expressed in terms of quantitative and rotationally invariant parameters. ^ Systematic study of SCI in vivo requires controlled animal models such as the popular rat model. To date, studies of spinal cord using ADT imaging have been performed exclusively in fixed, excised spinal cords, introducing inevitable artifacts and losing the benefits of MRI's noninvasive nature. In vivo imaging reflects the actual in vivo tissue properties, and allows each animal to be imaged at multiple time points, greatly reducing the number of animals required to achieve statistical significance. Because the spinal cord is very small, the available signal-to-noise ratio (SNR) is very low. Prior spin-echo based ADT studies of rat spinal cord have relied on high magnetic field strengths and long imaging times—on the order of 10 hours—for adequate SNR. Such long imaging times are incompatible with in vivo imaging, and are not relevant for imaging the early phases following SCI. Echo planar imaging (EPI) is one of the fastest imaging methods, and is popular for diffusion imaging. However, EPI further lowers the image SNR, and is very sensitive to small imperfections in the magnetic field, such as those introduced by the bony spine. Additionally, The small field-of-view (FOV) needed for spinal cord imaging requires large imaging gradients which generate EPI artifacts. The addition of diffusion gradients introduces yet further artifacts. ^ This work develops a method for rapid EPI-based in vivo diffusion imaging of rat spinal cord. The method involves improving the SNR using an implantable coil; reducing magnetic field inhomogeneities by means of an autoshim, and correcting EPI artifacts by post-processing. New EPI artifacts due to diffusion gradients described, and post-processing correction techniques are developed. ^ These techniques were used to obtain rotationally invariant diffusion parameters from 9 animals in vivo, and were validated using the gold-standard, but slow, spinecho based diffusion sequence. These are the first reported measurements of the ADT in spinal cord in vivo . ^ Many of the techniques described are equally applicable toward imaging of human spinal cord. We anticipate that these techniques will aid in evaluating and optimizing potential therapies, and will lead to improved patient care. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) is a non-invasive technique that offers excellent soft tissue contrast for characterizing soft tissue pathologies. Diffusion tensor imaging (DTI) is an MRI technique that has shown to have the sensitivity to detect subtle pathology that is not evident on conventional MRI. ^ Rats are commonly used as animal models in characterizing the spinal cord pathologies including spinal cord injury (SCI), cancer, multiple sclerosis, etc. These pathologies could affect both thoracic and cervical regions and complete characterization of these pathologies using MRI requires DTI characterization in both the thoracic and cervical regions. Prior to the application of DTI for investigating the pathologic changes in the spinal cord, it is essential to establish DTI metrics in normal animals. ^ To date, in-vivo DTI studies of rat spinal cord have used implantable coils for high signal-to-noise ratio (SNR) and spin-echo pulse sequences for reduced geometric distortions. Implantable coils have several disadvantages including: (1) the invasive nature of implantation, (2) loss of SNR due to frequency shift with time in the longitudinal studies, and (3) difficulty in imaging the cervical region. While echo planar imaging (EPI) offers much shorter acquisition times compared to spin-echo imaging, EPI is very sensitive to static magnetic field inhomogeneities and the existing shimming techniques implemented on the MRI scanner do not perform well on spinal cord because of its geometry. ^ In this work, an integrated approach has been implemented for in-vivo DTI characterization of rat spinal cord in the thoracic and cervical regions. A three element phased array coil was developed for improved SNR and extended spatial coverage. A field-map shimming technique was developed for minimizing the geometric distortions in EPI images. Using these techniques, EPI based DWI images were acquired with optimized diffusion encoding scheme from 6 normal rats and the DTI-derived metrics were quantified. ^ The phantom studies indicated higher SNR and smaller bias in the estimated DTI metrics than the previous studies in the cervical region. In-vivo results indicated no statistical difference in the DTI characteristics of either gray matter or white matter between the thoracic and cervical regions. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High Angular Resolution Diffusion Imaging (HARDI) techniques, including Diffusion Spectrum Imaging (DSI), have been proposed to resolve crossing and other complex fiber architecture in the human brain white matter. In these methods, directional information of diffusion is inferred from the peaks in the orientation distribution function (ODF). Extensive studies using histology on macaque brain, cat cerebellum, rat hippocampus and optic tracts, and bovine tongue are qualitatively in agreement with the DSI-derived ODFs and tractography. However, there are only two studies in the literature which validated the DSI results using physical phantoms and both these studies were not performed on a clinical MRI scanner. Also, the limited studies which optimized DSI in a clinical setting, did not involve a comparison against physical phantoms. Finally, there is lack of consensus on the necessary pre- and post-processing steps in DSI; and ground truth diffusion fiber phantoms are not yet standardized. Therefore, the aims of this dissertation were to design and construct novel diffusion phantoms, employ post-processing techniques in order to systematically validate and optimize (DSI)-derived fiber ODFs in the crossing regions on a clinical 3T MR scanner, and develop user-friendly software for DSI data reconstruction and analysis. Phantoms with a fixed crossing fiber configuration of two crossing fibers at 90° and 45° respectively along with a phantom with three crossing fibers at 60°, using novel hollow plastic capillaries and novel placeholders, were constructed. T2-weighted MRI results on these phantoms demonstrated high SNR, homogeneous signal, and absence of air bubbles. Also, a technique to deconvolve the response function of an individual peak from the overall ODF was implemented, in addition to other DSI post-processing steps. This technique greatly improved the angular resolution of the otherwise unresolvable peaks in a crossing fiber ODF. The effects of DSI acquisition parameters and SNR on the resultant angular accuracy of DSI on the clinical scanner were studied and quantified using the developed phantoms. With a high angular direction sampling and reasonable levels of SNR, quantification of a crossing region in the 90°, 45° and 60° phantoms resulted in a successful detection of angular information with mean ± SD of 86.93°±2.65°, 44.61°±1.6° and 60.03°±2.21° respectively, while simultaneously enhancing the ODFs in regions containing single fibers. For the applicability of these validated methodologies in DSI, improvement in ODFs and fiber tracking from known crossing fiber regions in normal human subjects were demonstrated; and an in-house software package in MATLAB which streamlines the data reconstruction and post-processing for DSI, with easy to use graphical user interface was developed. In conclusion, the phantoms developed in this dissertation offer a means of providing ground truth for validation of reconstruction and tractography algorithms of various diffusion models (including DSI). Also, the deconvolution methodology (when applied as an additional DSI post-processing step) significantly improved the angular accuracy of the ODFs obtained from DSI, and should be applicable to ODFs obtained from the other high angular resolution diffusion imaging techniques.