35 resultados para radiation dose
Resumo:
PURPOSE: To determine whether a 3-mm isotropic target margin adequately covers the prostate and seminal vesicles (SVs) during administration of an intensity-modulated radiation therapy (IMRT) treatment fraction, assuming that daily image-guided setup is performed just before each fraction. MATERIALS AND METHODS: In-room computed tomographic (CT) scans were acquired immediately before and after a daily treatment fraction in 46 patients with prostate cancer. An eight-field IMRT plan was designed using the pre-fraction CT with a 3-mm margin and subsequently recalculated on the post-fraction CT. For convenience of comparison, dose plans were scaled to full course of treatment (75.6 Gy). Dose coverage was assessed on the post-treatment CT image set. RESULTS: During one treatment fraction (21.4+/-5.5 min), there were reductions in the volumes of the prostate and SVs receiving the prescribed dose (median reduction 0.1% and 1.0%, respectively, p<0.001) and in the minimum dose to 0.1 cm(3) of their volumes (median reduction 0.5 and 1.5 Gy, p<0.001). Of the 46 patients, three patients' prostates and eight patients' SVs did not maintain dose coverage above 70 Gy. Rectal filling correlated with decreased percentage-volume of SV receiving 75.6, 70, and 60 Gy (p<0.02). CONCLUSIONS: The 3-mm intrafractional margin was adequate for prostate dose coverage. However, a significant subset of patients lost SV dose coverage. The rectal volume change significantly affected SV dose coverage. For advanced-stage prostate cancers, we recommend to use larger margins or improve organ immobilization (such as with a rectal balloon) to ensure SV coverage.
Resumo:
Purpose: To evaluate normal tissue dose reduction in step-and-shoot intensity-modulated radiation therapy (IMRT) on the Varian 2100 platform by tracking the multileaf collimator (MLC) apertures with the accelerator jaws. Methods: Clinical radiation treatment plans for 10 thoracic, 3 pediatric and 3 head and neck patients were converted to plans with the jaws tracking each segment’s MLC apertures. Each segment was then renormalized to account for the change in collimator scatter to obtain target coverage within 1% of that in the original plan. The new plans were compared to the original plans in a commercial radiation treatment planning system (TPS). Reduction in normal tissue dose was evaluated in the new plan by using the parameters V5, V10, and V20 in the cumulative dose-volume histogram for the following structures: total lung minus GTV (gross target volume), heart, esophagus, spinal cord, liver, parotids, and brainstem. In order to validate the accuracy of our beam model, MLC transmission measurements were made and compared to those predicted by the TPS. Results: The greatest change between the original plan and new plan occurred at lower dose levels. The reduction in V20 was never more than 6.3% and was typically less than 1% for all patients. The reduction in V5 was 16.7% maximum and was typically less than 3% for all patients. The variation in normal tissue dose reduction was not predictable, and we found no clear parameters that indicated which patients would benefit most from jaw tracking. Our TPS model of MLC transmission agreed with measurements with absolute transmission differences of less than 0.1 % and thus uncertainties in the model did not contribute significantly to the uncertainty in the dose determination. Conclusion: The amount of dose reduction achieved by collimating the jaws around each MLC aperture in step-and-shoot IMRT does not appear to be clinically significant.
Resumo:
Intensity modulated radiation therapy (IMRT) is a technique that delivers a highly conformal dose distribution to a target volume while attempting to maximally spare the surrounding normal tissues. IMRT is a common treatment modality used for treating head and neck (H&N) cancers, and the presence of many critical structures in this region requires accurate treatment delivery. The Radiological Physics Center (RPC) acts as both a remote and on-site quality assurance agency that credentials institutions participating in clinical trials. To date, about 30% of all IMRT participants have failed the RPC’s remote audit using the IMRT H&N phantom. The purpose of this project is to evaluate possible causes of H&N IMRT delivery errors observed by the RPC, specifically IMRT treatment plan complexity and the use of improper dosimetry data from machines that were thought to be matched but in reality were not. Eight H&N IMRT plans with a range of complexity defined by total MU (1460-3466), number of segments (54-225), and modulation complexity scores (MCS) (0.181-0.609) were created in Pinnacle v.8m. These plans were delivered to the RPC’s H&N phantom on a single Varian Clinac. One of the IMRT plans (1851 MU, 88 segments, and MCS=0.469) was equivalent to the median H&N plan from 130 previous RPC H&N phantom irradiations. This average IMRT plan was also delivered on four matched Varian Clinac machines and the dose distribution calculated using a different 6MV beam model. Radiochromic film and TLD within the phantom were used to analyze the dose profiles and absolute doses, respectively. The measured and calculated were compared to evaluate the dosimetric accuracy. All deliveries met the RPC acceptance criteria of ±7% absolute dose difference and 4 mm distance-to-agreement (DTA). Additionally, gamma index analysis was performed for all deliveries using a ±7%/4mm and ±5%/3mm criteria. Increasing the treatment plan complexity by varying the MU, number of segments, or varying the MCS resulted in no clear trend toward an increase in dosimetric error determined by the absolute dose difference, DTA, or gamma index. Varying the delivery machines as well as the beam model (use of a Clinac 6EX 6MV beam model vs. Clinac 21EX 6MV model), also did not show any clear trend towards an increased dosimetric error using the same criteria indicated above.
Resumo:
Advances in radiotherapy have generated increased interest in comparative studies of treatment techniques and their effectiveness. In this respect, pediatric patients are of specific interest because of their sensitivity to radiation induced second cancers. However, due to the rarity of childhood cancers and the long latency of second cancers, large sample sizes are unavailable for the epidemiological study of contemporary radiotherapy treatments. Additionally, when specific treatments are considered, such as proton therapy, sample sizes are further reduced due to the rareness of such treatments. We propose a method to improve statistical power in micro clinical trials. Specifically, we use a more biologically relevant quantity, cancer equivalent dose (DCE), to estimate risk instead of mean absorbed dose (DMA). Our objective was to demonstrate that when DCE is used fewer subjects are needed for clinical trials. Thus, we compared the impact of DCE vs. DMA on sample size in a virtual clinical trial that estimated risk for second cancer (SC) in the thyroid following craniospinal irradiation (CSI) of pediatric patients using protons vs. photons. Dose reconstruction, risk models, and statistical analysis were used to evaluate SC risk from therapeutic and stray radiation from CSI for 18 patients. Absorbed dose was calculated in two ways: with (1) traditional DMA and (2) with DCE. DCE and DMA values were used to estimate relative risk of SC incidence (RRCE and RRMA, respectively) after proton vs. photon CSI. Ratios of RR for proton vs. photon CSI (RRRCE and RRRMA) were then used in comparative estimations of sample size to determine the minimal number of patients needed to maintain 80% statistical power when using DCE vs. DMA. For all patients, we found that protons substantially reduced the risk of developing a second thyroid cancer when compared to photon therapy. Mean RRR values were 0.052±0.014 and 0.087±0.021 for RRRMA and RRRCE, respectively. However, we did not find that use of DCE reduced the number of patents needed for acceptable statistical power (i.e, 80%). In fact, when considerations were made for RRR values that met equipoise requirements and the need for descriptive statistics, the minimum number of patients needed for a micro-clinical trial increased from 17 using DMA to 37 using DCE. Subsequent analyses revealed that for our sample, the most influential factor in determining variations in sample size was the experimental standard deviation of estimates for RRR across the patient sample. Additionally, because the relative uncertainty in dose from proton CSI was so much larger (on the order of 2000 times larger) than the other uncertainty terms, it dominated the uncertainty in RRR. Thus, we found that use of corrections for cell sterilization, in the form of DCE, may be an important and underappreciated consideration in the design of clinical trials and radio-epidemiological studies. In addition, the accurate application of cell sterilization to thyroid dose was sensitive to variations in absorbed dose, especially for proton CSI, which may stem from errors in patient positioning, range calculation, and other aspects of treatment planning and delivery.
Resumo:
The MDAH pencil-beam algorithm developed by Hogstrom et al (1981) has been widely used in clinics for electron beam dose calculations for radiotherapy treatment planning. The primary objective of this research was to address several deficiencies of that algorithm and to develop an enhanced version. Two enhancements have been incorporated into the pencil-beam algorithm; one models fluence rather than planar fluence, and the other models the bremsstrahlung dose using measured beam data. Comparisons of the resulting calculated dose distributions with measured dose distributions for several test phantoms have been made. From these results it is concluded (1) that the fluence-based algorithm is more accurate to use for the dose calculation in an inhomogeneous slab phantom, and (2) the fluence-based calculation provides only a limited improvement to the accuracy the calculated dose in the region just downstream of the lateral edge of an inhomogeneity. The source of the latter inaccuracy is believed primarily due to assumptions made in the pencil beam's modeling of the complex phantom or patient geometry.^ A pencil-beam redefinition model was developed for the calculation of electron beam dose distributions in three dimensions. The primary aim of this redefinition model was to solve the dosimetry problem presented by deep inhomogeneities, which was the major deficiency of the enhanced version of the MDAH pencil-beam algorithm. The pencil-beam redefinition model is based on the theory of electron transport by redefining the pencil beams at each layer of the medium. The unique approach of this model is that all the physical parameters of a given pencil beam are characterized for multiple energy bins. Comparisons of the calculated dose distributions with measured dose distributions for a homogeneous water phantom and for phantoms with deep inhomogeneities have been made. From these results it is concluded that the redefinition algorithm is superior to the conventional, fluence-based, pencil-beam algorithm, especially in predicting the dose distribution downstream of a local inhomogeneity. The accuracy of this algorithm appears sufficient for clinical use, and the algorithm is structured for future expansion of the physical model if required for site specific treatment planning problems. ^
Resumo:
Ultraviolet (UV) radiation produces immunological alterations in both humans and animals that include a decrease in the delayed type hypersensitivity (DTH) response to complex antigens, and to the induction of the suppressor T cell pathway. Cell-mediated immunity of the type that is altered by UV radiation has been shown to be important in host resistance against microorganisms. My dissertation addresses questions concerning the effects of UV radiation on the pathogenesis of opportunistic fungal pathogens such as Candida albicans.^ The (DTH) response of C3H mice exposed to ultraviolet (UV) radiation before (afferent arm of DTH) or after (efferent arm of DTH) infection with Candida albicans was markedly and systemically suppressed. Although suppression of both the afferent and efferent phases of DTH were caused by similar wavebands within the ultraviolet region, the dose of UV radiation that suppressed the efferent arm of DTH was 10-fold higher than the dose that suppressed the afferent arm of the DTH reaction.^ The DTH response of C57BL/6 mice was also suppressed by UV radiation; however the suppression was accomplished by exposure to significantly lower doses UV radiation compared to C3H mice. In C57BL/6 mice, the dose of UV radiation that suppressed the afferent phase of DTH was 5-fold higher than the dose that suppressed the efferent phase.^ Exposure of C3H mice to UV radiation before sensitization induced splenic suppressor T cells that upon transfer to normal recipients, impaired the induction of DTH to Candida. In contrast, the suppression caused by UV irradiation of mice after sensitization was not transferable. Spleen cells from sensitized mice exhibited altered homing patterns in animals that were exposed to UV radiation shortly before receiving cells, suggesting that UV-induced suppression of the efferent arm of DTH could result from an alteration in the distribution of effector cells.^ UV radiation decreased the survival of Candida-infected mice; however, no correlation was found between suppression of the DTH response and the course of lethal infection. This suggested that DTH was not protective against lethal disease with this organism. UV radiation also changed the persistence of the organism in the internal organs. UV-irradiated, infected animals had increased numbers of Candida in their kidneys compared to non-irradiated mice. Sensitization prior to UV irradiation aided clearance of the organism from the kidneys of UV-irradiated mice.^ These data show that UV radiation suppresses cell-mediated immunity to Candida albicans in mice and increases mortality of Candida-infected mice. Moreover, the data suggest that an increase in environmental UV radiation could increase the severity of pathogenic infections. ^
Resumo:
Ultraviolet B (UVB) radiation, in addition to being carcinogenic, is also immunosuppressive. Immunologically, UVB induces suppression locally, at the site of irradiation, or systemically, by inducing the production of a variety of immunosuppressive cytokines. Systemic effects include suppression of delayed-type hypersensitivity (DTH) responses to a variety of antigens (e.g. haptens, proteins, bacterial antigens, or alloantigens). One of the principal mediators of UV-induced immune suppression is the T helper-2 (Th2) cytokine interleukin-10 (IL-10); this suggests that UV irradiation induces suppression by shifting the immune response from a Th1 (cellular) to a Th2 (humoral) response. These "opposing" T helper responses are usually mutually exclusive, and polarized Th1 or Th2 responses may lead to either protection from infection or increased susceptibility to disease, depending on the infectious agent and the route of infection.^ This study examines the effects of UVB irradiation on cellular and humoral responses to Borrelia burgdorferi (Bb), the causative agent of Lyme disease (LD) in both immunization and infectious disease models; in addition, it examines the role of T cells in protection from and pathology of Bb infection. Particular emphasis is placed on the Bb-specific antibody responses following irradiation since UVB effects on humoral immunity are not fully understood. Mice were irradiated with a single dose of UV and then immunized (in complete Freund's adjuvant) or infected with Bb (intradermally at the base of the tail) in order to examine both DTH and antibody responses in both systems. UVB suppressed the Th1-associated antibodies IgG2a and IgG2b in both systems, as well as the DTH response to Bb in a dose dependent manner. Injection of anti-IL-10 antibody into UV-irradiated mice within 24 h after UV exposure restored the DTH response, as well as the Th1 antibody (IgG2a and IgG2b) response. In addition, injecting recombinant IL-10 mimicked some of the effects of UV radiation.^ Bb-specific Th1 T cell lines (BAT2.1-2.3) were generated to examine the role of T cells in Lyme borreliosis. All lines were CD4$\sp+,$ $\alpha\beta\sp+$ and proliferated specifically in response to Bb. The BAT2 cell lines not only conferred a DTH response to naive C3H recipients, but reduced the number of organisms recovered from the blood and tissues of mice infected with Bb. Furthermore, BAT2 cell lines protected mice from Bb-induced periarthritis. ^
Resumo:
Radiotherapy involving the thoracic cavity and chemotherapy with the drug bleomycin are both dose limited by the development of pulmonary fibrosis. From evidence that there is variation in the population in susceptibility to pulmonary fibrosis, and animal data, it was hypothesized that individual variation in susceptibility to bleomycin-induced, or radiation-induced, pulmonary fibrosis is, in part, genetically controlled. In this thesis a three generation mouse genetic model of C57BL/6J (fibrosis prone) and C3Hf/Kam (fibrosis resistant) mouse strains and F1 and F2 (F1 intercross) progeny derived from the parental strains was developed to investigate the genetic basis of susceptibility to fibrosis. In the bleomycin studies the mice received 100 mg/kg (125 for females) of bleomycin, via mini osmotic pump. The animals were sacrificed at eight weeks following treatment or when their breathing rate indicated respiratory distress. In the radiation studies the mice were given a single dose of 14 or 16 Gy (Co$\sp{60})$ to the whole thorax and were sacrificed when moribund. The phenotype was defined as the percent of fibrosis area in the left lung as quantified with image analysis of histological sections. Quantitative trait loci (QTL) mapping was used to identify the chromosomal location of genes which contribute to susceptibility to bleomycin-induced pulmonary fibrosis in C57BL/6J mice compared to C3Hf/Kam mice and to determine if the QTL's which influence susceptibility to bleomycin-induced lung fibrosis in these progenitor strains could be implicated in susceptibility to radiation-induced lung fibrosis. For bleomycin, a genome wide scan revealed QTL's on chromosome 17, at the MHC, (LOD = 11.7 for males and 7.2 for females) accounting for approximately 21% of the phenotypic variance, and on chromosome 11 (LOD = 4.9), in male mice only, adding 8% of phenotypic variance. The bleomycin QTL on chromosome 17 was also implicated for susceptibility to radiation-induced fibrosis (LOD = 5.0) and contributes 7% of the phenotypic variance in the radiation study. In conclusion, susceptibility to both bleomycin-induced and radiation-induced pulmonary fibrosis are heritable traits, and are influenced by a genetic factor which maps to a genomic region containing the MHC. ^
Resumo:
The object of this work was to study the possibility that microtubule assembly might be involved in radiation sensitivity effect. The proliferating hair follicle was used to study the effects of cooling c-AMP, colcemid, and vincristine on the survival of the hair after irradiation. It was found that after 2 hours of cooling at the rewarming stage of the hair follicles, the sensitivity to irradiation increased and colcemid reversed this effect. c-AMP decreased radiosensitivity and together with colcemid, sensitivity decreased considerably. It is proposed that the assembly of microtubules is sensitive to irradiation.^ Total tubulin in L-P59 tumor measured immediately after irradiation was found to decrease in a dose specific manner after single doses ranging from 500 to 2000 rad. It is proposed that the change in Ca('2+) concentration after irradiation might cause this effect. Irradiation inhibited the increase in specific viscosity of 3x and 1x tubulin irradiated at the time of assembly. A small reduction in specific viscosity was found when polymerized microtubules were irradiated.^ From these experiments it is proposed that the assembly of microtubules is affected by irradiation. It may be the result of an increase in CA('2+) concentration in the tissue after irradiation or an inactivation of the initiation centers. The effects of irradiation on unassembled tubulin or assembled microtubules is negligible. ^
Resumo:
Lung cancer is the leading cause of cancer death. However, poor survival using conventional therapies fuel the search for more rational interventions. The objective of this study was to design and implement a 4HPR-radiation interaction model in NSCLC, employing a traditional clinical modality (radiation), a relatively new, therapeutically unexplored agent (4HPR) and rationally combining them based on molecular mechanistic findings pertaining to their interactions. To test the hypothesis that 4HPR sensitizes cells to radiation-induced cell death via G2+M accumulation, we designed a working model consisting of H522 adenocarcinoma cells (p53, K-ras mutated) derived from an NSCLC patient; 4HPR at concentrations up to 10 μM; and X radiation up to 6 Gy generated by a patient-dedicated Phillips RT-250 X ray unit at 250 KV, 15 mA, 1.85 Gy/min. We found that 4HPR produced time- and dose-dependent morphological changes, growth inhibition, and DNA damage-inducing enhancement of reactive oxygen species. A transient G2+M accumulation of cells maximal at 24 h of continuous 4HPR exposure was used for irradiation time scheduling. Our data demonstrated enhanced cell death (both apoptotic and necrotic) in irradiated cells pre-treated with 4HPR versus those with either stressor alone. 4HPR's effect of increased NSCLC cells' radioresponse was confirmed by clonogenic assay. To explore these practical findings from a molecular mechanistic perspective, we further investigated and showed that levels of cyclin B1 and p34cdc2 kinase—both components of the mitosis promoting factor (MPF) regulating the G2/M transition—did not change following 4HPR treatment. Likewise, cdc25C phosphatase was not altered. However, enhanced p34cdc2 phosphorylation on its Thr14Tyr15 residues—indicative of its inactivation and increased expression of MPF negative regulators chk1 and wee1 kinases—were supportive of explaining 4HPR-treated cells' accumulation. Hence, p34cdc2 phosphorylation, chk1, and wee1 warrant further evaluation as potential molecular targets for 4HPR-X radiation combination. In summary, we (1) demonstrated that 4HPR not only induces cell death by itself, but also increases NSCLC cells' subsequent radioresponse, indicative of potential clinical applicability, and (2) for the first time, shed light on deciphering 4HPR-X radiation molecular mechanisms of interaction, including the finding of 4HPR's role as a p34cdc2 inactivator via Thr14Tyr15 phosphorylation. ^
Resumo:
Uveal melanoma is a rare but life-threatening form of ocular cancer. Contemporary treatment techniques include proton therapy, which enables conservation of the eye and its useful vision. Dose to the proximal structures is widely believed to play a role in treatment side effects, therefore, reliable dose estimates are required for properly evaluating the therapeutic value and complication risk of treatment plans. Unfortunately, current simplistic dose calculation algorithms can result in errors of up to 30% in the proximal region. In addition, they lack predictive methods for absolute dose per monitor unit (D/MU) values. ^ To facilitate more accurate dose predictions, a Monte Carlo model of an ocular proton nozzle was created and benchmarked against measured dose profiles to within ±3% or ±0.5 mm and D/MU values to within ±3%. The benchmarked Monte Carlo model was used to develop and validate a new broad beam dose algorithm that included the influence of edgescattered protons on the cross-field intensity profile, the effect of energy straggling in the distal portion of poly-energetic beams, and the proton fluence loss as a function of residual range. Generally, the analytical algorithm predicted relative dose distributions that were within ±3% or ±0.5 mm and absolute D/MU values that were within ±3% of Monte Carlo calculations. Slightly larger dose differences were observed at depths less than 7 mm, an effect attributed to the dose contributions of edge-scattered protons. Additional comparisons of Monte Carlo and broad beam dose predictions were made in a detailed eye model developed in this work, with generally similar findings. ^ Monte Carlo was shown to be an excellent predictor of the measured dose profiles and D/MU values and a valuable tool for developing and validating a broad beam dose algorithm for ocular proton therapy. The more detailed physics modeling by the Monte Carlo and broad beam dose algorithms represent an improvement in the accuracy of relative dose predictions over current techniques, and they provide absolute dose predictions. It is anticipated these improvements can be used to develop treatment strategies that reduce the incidence or severity of treatment complications by sparing normal tissue. ^
Resumo:
Because the goal of radiation therapy is to deliver a lethal dose to the tumor, accurate information on the location of the tumor needs to be known. Margins are placed around the tumor to account for variations in the daily position of the tumor. If tumor motion and patient setup uncertainties can be reduced, margins that account for such uncertainties in tumor location in can be reduced allowing dose escalation, which in turn could potentially improve survival rates. ^ In the first part of this study, we monitor the location of fiducials implanted in the periphery of lung tumors to determine the extent of non-gated and gated fiducial motion, and to quantify patient setup uncertainties. In the second part we determine where the tumor is when different methods of image-guided patient setup and respiratory gating are employed. In the final part we develop, validate, and implement a technique in which patient setup uncertainties are reduced by aligning patients based upon fiducial locations in projection images. ^ Results from the first part indicate that respiratory gating reduces fiducial motion relative to motion during normal respiration and setup uncertainties when the patients were aligned each day using externally placed skin marks are large. The results from the second part indicate that current margins that account for setup uncertainty and tumor motion result in less than 2% of the tumor outside of the planning target volume (PTV) when the patient is aligned using skin marks. In addition, we found that if respiratory gating is going to be used, it is most effective if used in conjunction with image-guided patient setup. From the third part, we successfully developed, validated, and implemented on a patient a technique for aligning a moving target prior to treatment to reduce the uncertainties in tumor location. ^ In conclusion, setup uncertainties and tumor motion are a significant problem when treating tumors located within the thoracic region. Image-guided patient setup in conjunction with treatment delivery using respiratory gating reduces these uncertainties in tumor locations. In doing so, margins around the tumor used to generate the PTV can be reduced, which may allow for dose escalation to the tumor. ^
Resumo:
The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity. ^
Resumo:
Radiation therapy has been used as an effective treatment for malignancies in pediatric patients. However, in many cases, the side effects of radiation diminish these patients’ quality of life. In order to develop strategies to minimize radiogenic complications, one must first quantitatively estimate pediatric patients’ relative risk for radiogenic late effects, which has not become feasible till recently because of the calculational complexity. The goals of this work were to calculate the dose delivered to tissues and organs in pediatric patients during contemporary photon and proton radiotherapies; to estimate the corresponding risk of radiogenic second cancer and cardiac toxicity based on the calculated doses and on dose-risk models from the literature; to test for the statistical significance of the difference between predicted risks after photon versus proton radiotherapies; and to provide a prototype of an evidence-based approach to selecting treatment modalities for pediatric patients, taking second cancer and cardiac toxicity into account. The results showed that proton therapy confers a lower predicted risk of radiogenic second cancer, and lower risks of radiogenic cardiac toxicities, compared to photon therapy. An uncertainty analysis revealed that the qualitative findings of this study are insensitive to changes in a wide variety of host and treatment related factors.
Resumo:
A nested case-control study design was used to investigate the relationship between radiation exposure and brain cancer risk in the United States Air Force (USAF). The cohort consisted of approximately 880,000 men with at least 1 year of service between 1970 and 1989. Two hundred and thirty cases were identified from hospital discharge records with a diagnosis of primary malignant brain tumor (International Classification of Diseases, 9th revision, code 191). Four controls were exactly matched with each case on year of age and race using incidence density sampling. Potential career summary extremely low frequency (ELF) and microwave-radiofrequency (MWRF) radiation exposures were based upon the duration in each occupation and an intensity score assigned by an expert panel. Ionizing radiation (IR) exposures were obtained from personal dosimetry records.^ Relative to the unexposed, the overall age-race adjusted odds ratio (OR) for ELF exposure was 1.39, 95 percent confidence interval (CI) 1.03-1.88. A dose-response was not evident. The same was true for MWRF, although the OR = 1.59, with 95 percent CI 1.18-2.16. Excess risk was not found for IR exposure (OR = 0.66, 45 percent CI 0.26-1.72).^ Increasing socioeconomic status (SES), as identified by military pay grade, was associated with elevated brain tumor risk (officer vs. enlisted personnel age-race adjusted OR = 2.11, 95 percent CI 1.98-3.01, and senior officers vs. all others age-race adjusted OR = 3.30, 95 percent CI 2.0-5.46). SES proved to be an important confounder of the brain tumor risk associated with ELF and MWRF exposure. For ELF, the age-race-SES adjusted OR = 1.28, 95 percent CI 0.94-1.74, and for MWRF, the age-race-SES adjusted OR = 1.39, 95 percent CI 1.01-1.90.^ These results indicate that employment in Air Force occupations with potential electromagnetic field exposures is weakly, though not significantly, associated with increased risk for brain tumors. SES appeared to be the most consistent brain tumor risk factor in the USAF cohort. Other investigators have suggested that an association between brain tumor risk and SES may arise from differential access to medical care. However, in the USAF cohort health care is universally available. This study suggests that some factor other than access to medical care must underlie the association between SES and brain tumor risk. ^