18 resultados para planets and satellites: formation
Resumo:
Use of Echogenic Immunoliposomes for Delivery of both Drug and Stem Cells for Inhibition of Atheroma Progression By Ali K. Naji B.S. Advisor: Dr. Melvin E. Klegerman PhD Background and significance: Echogenic liposomes can be used as drug and cell delivery vehicles that reduce atheroma progression. Vascular endothelial growth factor (VEGF) is a signal protein that induces vasculogenesis and angiogenesis. VEGF functionally induces migration and proliferation of endothelial cells and increases intracellular vascular permeability. VEGF activates angiogenic transduction factors through VEGF tyrosine kinase domains in high-affinity receptors of endothelial cells. Bevacizumab is a humanized monoclonal antibody specific for VEGF-A which was developed as an anti-tumor agent. Often, anti-VEGF agents result in regression of existing microvessels, inhibiting tumor growth and possibly causing tumor shrinkage with time. During atheroma progression neovasculation in the arterial adventitia is mediated by VEGF. Therefore, bevacizumab may be effective in inhibiting atheroma progression. Stem cells show an ability to inhibit atheroma progression. We have previously demonstrated that monocyte derived CD-34+ stem cells that can be delivered to atheroma by bifunctional-ELIP ( BF-ELIP) targeted to Intercellular Adhesion Molecule-1 (ICAM-1) and CD-34. Adhesion molecules such as ICAM-1 and vascular cell adhesion molecule-1 (VCAM-1) are expressed by endothelial cells under inflammatory conditions. Ultrasound enhanced liposomal targeting provides a method for stem cell delivery into atheroma and encapsulated drug release. This project is designed to examine the ability of echogenic liposomes to deliver bevacizumab and stem cells to inhibit atheroma progression and neovasculation with and without ultrasound in vitro and optimize the ultrasound parameters for delivery of bevacizumab and stem cells to atheroma. V Hypotheses: Previous studies showed that endothelial cell VEGF expression may relate to atherosclerosis progression and atheroma formation in the cardiovascular system. Bevacizumab-loaded ELIP will inhibit endothelial cell VEGF expression in vitro. Bevacizumab activity can be enhanced by pulsed Doppler ultrasound treatment of BEV-ELIP. I will also test the hypothesis that the transwell culture system can serve as an in vitro model for study of US-enhanced targeted delivery of stem cells to atheroma. Monocyte preparations will serve as a source of CD34+ stem cells. Specific Aims: Induce VEGF expression using PKA and PKC activation factors to endothelial cell cultures and use western blot and ELISA techniques to detect the expressed VEGF. Characterize the relationship between endothelial cell proliferation and VEGF expression to develop a specific EC culture based system to demonstrate BEV-ELIP activity as an anti-VEGF agent. Design a cell-based assay for in vitro assessment of ultrasound-enhanced bevacizumab release from echogenic liposomes. Demonstrate ultrasound delivery enhancement of stem cells by applying different types of liposomes on transwell EC culture using fluorescently labeled monocytes and detect the effect on migration and attachment rate of these echogenic liposomes with and without ultrasound in vitro.
Resumo:
The present study was designed to determine the potential anticarcinogenic activity of naturally occurring coumarins and their mechanism of action. The results indicated that several naturally occurring coumarins including bergamottin, coriandrin, imperatorin, isopimpinellin, and ostruthin, to which humans are routinely exposed in the diet, were effective inhibitors and/or inactivators of CYP1A1-mediated ethoxyresorufin-O-dealkylase (EROD) or CYP2B1-mediated pentoxyresorufin-O-dealkylase (PROD) in mouse liver microsomes. In addition, bergamottin and corandrin were also found to be inhibitors of purified human P450 1A1 in vitro. Further studies with coriandrin revealed that this compound was a mechanism-based inactivator of P450 1A1 and covalently bound to the P450 1A1 apoprotein. In cultured mouse keratinocytes, bergamottin and coriandrin effectively inhibited the B(a) P metabolism and significantly decreased covalent binding of B(a) P and DMBA to keratinocyte DNA and anti-diol-epoxide-DNA adducts derived from both B(a) P and DMBA in keratinocytes. The data from in vivo experiments showed that bergamottin and coriandrin were potent inhibitors of covalent binding of B (a) P to epidermal DNA and the formation of (+) anti BPDE-DNA adduct, whereas imperatorin and isopimpinellin were more potent inhibitors of covalent binding of DMBA to epidermal DNA. The ability of coumarins to inhibit covalent binding of B (a) P to DNA in mouse epidermis was positively correlated with their inhibitory effect P450 1A1 in vitro, while the inhibitory effect of coumarins on covalent binding of DMBA to epidermal DNA was positively correlated with their inhibitory effects on P450 2B1 and negatively to their inhibitory activity toward P450 1A1. The data from tumor experiments indicated that bergamottin, ostruthin, and coriandrin inhibited tumor initiation by B (a) P in a two-stage carcinogenesis protocol. Bergamottin was most effective in this regard and produced a dose dependent inhibition of papilloma formation in these experiments. In addition, imperatorin was an effective inhibitor of skin tumorigenesis induced by DMBA in SENCAR mouse skin using both a two-stage and a complete carcinogenesis protocol. At dose levels higher than those effective against DMBA, imperatorin also inhibited tumor initiation by B (a) P. The results to date demonstrate that several naturally occurring coumarins possess the ability to block tumor initiation and tumorigenesis by PAHs such as B (a) P and DMBA through inhibition of the P450s involved in the metabolic activation of these hydrocarbons. A working model for the involvement of specific P450s in the metabolic activation of these two PAHs was proposed. ^
Resumo:
Cell growth and differentiation are complex and well-organized processes in which cells respond to stimuli from the environment by carrying out genetic programs. Transcription factors with helix-loop-helix (HLH) motif play critical roles in controlling the expression of genes involved in lineage commitment, cell fate determination, proliferation and tumorigenesis. This study has examined the roles of GCIP (CCNDBP1) in cell differentiation and tumorigenesis. GCIP is a recently identified HLH-leucine zipper protein without a basic region like the Id family of proteins. However, GCIP shares little sequence homology with the Id proteins and has domains with high acidic amino acids and leucine-rich regions following the HLH domain like c-Myc. Here we firstly demonstrate that GCIP is a transcription regulator related to muscle differentiation program. Overexpression of GCIP in C2C12 cells not only promotes myotube formation but also upregulates myogenic differentiation biomarkers, including MHC and myogenein. On the other hand, our finding also suggests that GCIP is a potential tumor suppressor related to cell cycle control. Expression of GCIP was significantly down-regulated in colon tumors as compared to normal colon tissues. Overexpression of GCIP in SW480 colon cancer cell line resulted in a significant inhibition on tumor cell colony formation on soft agar assays while silencing of GCIP expression by siRNA can promote cell proliferation and colony formation. In addition, results from transgenic mice specifically expressing GCIP in liver also support the idea that GCIP is involved in the early stage of hepatocarcinogenesis and decreased susceptibility to chemical hepatocarcinogenesis. ^