18 resultados para pediatric intensive care unit (PICU)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. Loud noises in neonatal intensive care units (NICUs) may impede growth and development for extremely low birthweight (ELBW, < 1000 grams) newborns. The objective of this study was to measure the association between NICU sound levels and ELBW neonates' arterial blood pressure to determine whether these newborns experience noise-induced stress. ^ Methods. Noise and arterial blood pressure recordings were collected for 9 ELBW neonates during the first week of life. Sound levels were measured inside the incubator, and each subject's arterial blood pressures were simultaneously recorded for 15 minutes (at 1 sec intervals). Time series cross-correlation functions were calculated for NICU noise and mean arterial blood pressure (MABP) recordings for each subject. The grand mean noise-MABP cross-correlation was calculated for all subjects and for lower and higher birthweight groups for comparison. ^ Results. The grand mean noise-MABP cross-correlation for all subjects was mostly negative (through 300 sec lag time) and nearly reached significance at the 95% level at 111 sec lag (mean r = -0.062). Lower birthweight newborns (454-709 g) experienced significant decreases in blood pressure with increasing NICU noise after 145 sec lag (peak r = -0.074). Higher birthweight newborns had an immediate negative correlation with NICU sound levels (at 3 sec lag, r = -0.071), but arterial blood pressures increased to a positive correlation with noise levels at 197 sec lag (r = 0.075). ^ Conclusions. ELBW newborns' arterial blood pressure was influenced by NICU noise levels during the first week of life. Lower birthweight newborns may have experienced an orienting reflex to NICU sounds. Higher birthweight newborns experienced an immediate orienting reflex to increasing sound levels, but arterial blood pressure increased approximately 3 minutes after increases in noise levels. Increases in arterial blood pressure following increased NICU sound levels may result from a stress response to noise. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of medical and social developments have had an impact on the neonatal mortality over the past ten to 15 years in the United States. The purpose of this study was to examine one of these developments, Newborn Intensive Care Units (NICUs), and evaluate their impact on neonatal mortality in Houston, Texas.^ This study was unique in that it used as its data base matched birth and infant death records from two periods of time: 1958-1960 (before NICUs) and 1974-1976 (after NICUs). The neonatal mortality of single, live infants born to Houston resident mothers was compared for two groups: infants born in hospitals which developed NICUs and infants born in all other Houston hospitals. Neonatal mortality comparisons were made using the following birth-characteristic variables: birthweight, gestation, race, sex, maternal age, legitimacy, birth order and prenatal care.^ The results of the study showed that hospitals which developed NICUs had a higher percentage of their population with high risk characteristics. In spite of this, they had lower neonatal mortality rates in two categories: (1) white 3.5-5.5 pounds birthweight infants, (2) low birthweight infants whose mothers received no prenatal care. Black 3.5-5.5 pounds birthweight infants did equally well in either hospital group. While the differences between the two hospital groups for these categories were not statistically significant at the p < 0.05 level, data from the 1958-1960 period substantiate that a marked change occurred in the 3.5-5.5 pounds birthweight category for those infants born in hospitals which developed NICUs. Early data were not available for prenatal care. These findings support the conclusion that, in Houston, NICUs had some impact on neonatal mortality among moderately underweight infants. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Despite almost 40 years of research into the etiology of Kawasaki Syndrome (KS), there is little research published on spatial and temporal clustering of KS cases. Previous analysis has found significant spatial and temporal clustering of cases, therefore cluster analyses were performed to substantiate these findings and provide insight into incident KS cases discharged from a pediatric tertiary care hospital. Identifying clusters from a single institution would allow for prospective analysis of risk factors and potential exposures for further insight into KS etiology. ^ Methods: A retrospective study was carried out to examine the epidemiology and distribution of patients presenting to Texas Children’s Hospital in Houston, Texas, with a diagnosis of Acute Febrile Mucocutaneous Lymph Node Syndrome (MCLS) upon discharge from January 1, 2005 to December 31, 2009. Spatial, temporal, and space-time cluster analyses were performed using the Bernoulli model with case and control event data. ^ Results: 397 of 102,761 total patients admitted to Texas Children’s Hospital had a principal or secondary diagnosis of Acute Febrile MCLS upon over the 5 year period. Demographic data for KS cases remained consistent with known disease epidemiology. Spatial, temporal, and space-time analyses of clustering using the Bernoulli model demonstrated no statistically significant clusters. ^ Discussion: Despite previous findings of spatial-temporal clustering of KS cases, there were no significant clusters of KS cases discharged from a single institution. This implicates the need for an expanded approach to conducting spatial-temporal cluster analysis and KS surveillance given the limitations of evaluating data from a single institution.^