26 resultados para nucleoside reverse transcriptase inhibitor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The FsrABC system of Enterococcus faecalis controls the expression of gelatinase and a serine protease via a quorum-sensing mechanism, and recent studies suggest that the Fsr system may also regulate other genes important for virulence. To investigate the possibility that Fsr influences the expression of additional genes, we used transcriptional profiling, with microarrays based on the E. faecalis strain V583 sequence, to compare the E. faecalis strain OG1RF with its isogenic mutant, TX5266, an fsrB deletion mutant. We found that the presence of an intact fsrB influences expression of numerous genes throughout the growth phases tested, namely, late log to early stationary phase. In addition, the Fsr regulon is independent of the activity of the proteases, GelE and SprE, whose expression was confirmed to be activated at all three time points tested. While expression of some genes (i.e., ef1097 and ef0750 to -757, encoding hypothetical proteins) was activated in late log phase in OG1RF versus the fsrB deletion mutant, expression of ef1617 to -1634 (eut-pdu orthologues) was highly repressed by the presence of an intact Fsr at entry into stationary phase. This is the first time that Fsr has been characterized as a negative regulator. The newly recognized Fsr-regulated targets include other factors, besides gelatinase, described as important for biofilms (BopD), and genes predicted to encode the surface proteins EF0750 to -0757 and EF1097, along with proteins implicated in several metabolic pathways, indicating that the FsrABC system may be an important regulator in strain OG1RF, with both positive and negative effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ(54)-σ(S) sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdorferi genes, including the major virulence genes ospA and ospC. However, the mechanism(s) by which the upstream activator and response regulator Rrp2 is activated remains unclear. Here, we show that none of the histidine kinases present in the B. burgdorferi genome are required for the activation of Rrp2. Instead, we present biochemical and genetic evidence that supports the hypothesis that activation of the Rrp2-RpoN-RpoS pathway occurs via the small, high-energy, phosphoryl-donor acetyl phosphate (acetyl∼P), the intermediate of the Ack-Pta (acetate kinase-phosphate acetyltransferase) pathway that converts acetate to acetyl-CoA. Supplementation of the growth medium with acetate induced activation of the Rrp2-RpoN-RpoS pathway in a dose-dependent manner. Conversely, the overexpression of Pta virtually abolished acetate-induced activation of this pathway, suggesting that acetate works through acetyl∼P. Overexpression of Pta also greatly inhibited temperature and cell density-induced activation of RpoS and OspC, suggesting that these environmental cues affect the Rrp2-RpoN-RpoS pathway by influencing acetyl∼P. Finally, overexpression of Pta partially reduced infectivity of B. burgdorferi in mice. Taken together, these findings suggest that acetyl∼P is one of the key activating molecule for the activation of the Rrp2-RpoN-RpoS pathway and support the emerging concept that acetyl∼P can serve as a global signal in bacterial pathogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vivo induced antigen technology (IVIAT) is an immuno-screening technique that identifies bacterial antigens expressed during infection and not during standard in vitro culturing conditions. We applied IVIAT to Bacillus anthracis and identified PagA, seven members of a N-acetylmuramoyl-L-alanine amidase autolysin family, three P60 family lipoproteins, two transporters, spore cortex lytic protein SleB, a penicillin binding protein, a putative prophage holin, respiratory nitrate reductase NarG, and three proteins of unknown function. Using quantitative real-time PCR comparing RNA isolated from in vitro cultured B. anthracis to RNA isolated from BALB/c mice infected with virulent Ames strain B. anthracis, we confirmed induced expression in vivo for a subset of B. anthracis genes identified by IVIAT, including L-alanine amidases BA3767, BA4073, and amiA (pXO2-42); the bacteriophage holin gene BA4074; and pagA (pXO1-110). The exogenous addition of two purified putative autolysins identified by IVIAT, N-acetylmuramoyl-L-alanine amidases BA0485 and BA2446, to vegetative B. anthracis cell suspensions induced a species-specific change in bacterial morphology and reduction in viable bacterial cells. Many of the proteins identified in our screen are predicted to affect peptidoglycan re-modeling, and our results support significant cell wall structural remodeling activity during B. anthracis infection. Identification of L-alanine amidases with B. anthracis specificity may suggest new potential therapeutic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutral bis ((pivaloyloxy)methyl) (PIV$\sb2\rbrack$ derivatives of FdUMP, ddUMP, and AZTMP were synthesized as potential membrane-permeable prodrugs of FdUMP, ddUMP, and AZTMP. These compounds were designed to enter cells by passive diffusion and revert to the parent nucleotides after removal of the PIV groups by hydrolytic enzymes. These prodrugs were prepared by condensation of FUdR, ddU, and AZT with PIV$\sb2$ phosphate in the presence of triphenylphosphine and diethyl azodicarboxylate (the Mitsunobo reagent). PIV$\sb2$-FdUMP, PIV$\sb2$-ddUMP, and PIV$\sb2$-AZTMP were stable in the pH range 1.0-4.0 (t$\sb{1/2} = {>}$100 h). They were also fairly stable at pH 7.4 (t$\sb{1/2} = {>}$40 h). In 0.05 M NaOH solution, however, they were rapidly degraded (t$\sb{1/2} < 2$ min). In the presence hog liver carboxylate esterase, they were converted quantitatively to the corresponding phosphodiesters, PIV$\sb1$-FdUMP, PIV$\sb1$-ddUMP, and PIV$\sb1$-AZTMP; after 24 h incubation, only trace amounts of FdUMP, ddUMP, and AZTMP (1-5%) were observed indicating that the PIV$\sb1$ compounds were poor substrates for the enzyme. In human plasma, the PIV$\sb2$ compounds were rapidly degraded with half-lives of less than 5 min. The rate of degradation of the PIV$\sb2$ compounds in the presence of phosphodiesterase I was the same as that in buffer controls, indicating that they were not substrates for this enzyme. In the presence of phosphodiesterase I, PIV$\sb1$-FdUMP, PIV$\sb1$-ddUMP, and PIV$\sb1$-AZTMP were converted quantitatively to FdUMP, ddUMP, and AZTMP.^ PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP were effective at controlling HIV type 1 infection in MT-4 and CEM tk$\sp-$ cells in culture. Mechanistic studies demonstrated that PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP were taken up by the cells and converted to ddUTP and AZTTP, both potent inhibitors of HIV reverse transcriptase. However, a potential shortcoming of PIV$\sb2$-ddUMP and PIV$\sb2$-AZTMP as clinical therapeutic agents is that they are rapidly degraded (t$\sb{1/2}$ = approx. 4 minutes) in human plasma by carboxylate esterases. To circumvent this limitation, chemically-labile nucleotide prodrugs and liposome-encapsulated nucleotide prodrugs were investigated. In the former approach, the protective groups bis(N, N-(dimethyl)carbamoyloxymethyl) (DM$\sb2$) and bis (N-(piperidino)carbamoyloxymethyl) (DP$\sb2$) were used to synthesize DM$\sb2$-ddUMP and DP$\sb2$-ddUMP, respectively. In aqueous buffers (pH range 1.0-9.0) these compounds were degraded with half-lives of 3 to 4 h. They had similar half-lives in human plasma demonstrating that they were resistant to esterase-mediated cleavage. However, neither compound gave rise to significant concentrations of ddUMP in CEM or CEM tk$\sp-$ cells. In the liposome-encapsulated nucleotide prodrug approach, three different liposomal formulations of PIV$\sb2$-ddUMP (L-PIV$\sb2$-ddUMP) were investigated. The half-lifes of these L-PIV$\sb2$-ddUMP preparations in human plasma were 2 h compared with 4 min for the free drug. The preparations were more effective at controlling HIV-1 infection than free PIV$\sb2$-ddUMP in human T cells in culture. Collectively, these data indicate that PIV$\sb2$-FdUMP, PIV$\sb2$-ddUMP, and PIV$\sb2$-AZTMP are effective membrane-permeable prodrugs of FdUMP, ddUMP, and AZTMP. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two murine leukemia viruses (MuLVs), Rauscher (R-MuLV) and Moloney (Mo-MuLV) MuLVs, were studied to identify the biosynthetic pathways leading to the generation of mature virion proteins. Emphasis was placed on the examination of the clone 1 Mo-MuLV infected cell system.^ At least three genetic loci vital to virion replication exist on the MuLV genome. The 'gag' gene encodes information for the virion core proteins. The 'pol' gene specifies information for the RNA-dependent-DNA-polymerase (pol), or reverse transcriptase (RT). The 'env' gene contains information for the virion envelope proteins.^ MuLV specified proteins were synthesized by way of precursor polyproteins, which were processed to yield mature virion proteins. Pulse-chase kinetic studies, radioimmunoprecipitation, and peptide mapping were the techniques used to identify and characterize the MuLV viral precursor polyproteins and mature virion proteins.^ The 'gag' gene of Mo-MuLV coded for two primary gene products. One 'gag' gene product was found to be a polyprotein of 65,000 daltons M(,r) (Pr65('gag)). Pr65('gag) contained the antigenic and structural determinants of all four viral core proteins--p30, p15, pp12 and p10. Pr65('gag) was the major intracellular precursor polyprotein in the generation of mature viral core proteins. The second 'gag' gene product was a glycosylated gene product (gPr('gag)). An 85,000 dalton M(,r) polyprotein (gPr85('gag)) and an 80,000 dalton M(,r) (gPr80('gag)) polyprotein were the products of the 'gag' genes of Mo-MuLV and R-MuLV, respectively. gPr('gag) contained the antigenic and structural determinants of the four virion core proteins. In addition, gPr('gag) contained peptide information over and above that of Pr65('gag). Pulse-chase kinetic studies in the presence of tunicamycin revealed a separate processing pathway of gPr('gag) that did not seem to involve the generation of mature virion core proteins. Subglycosylated gPr('gag) was found to have a molecular weight of 75,000 daltons (Pr75('gag)) for both Mo-MuLV and R-MuLV.^ The Mo-MuLV 'pol' gene product was initially synthesized as a read-through 'gag-pol' intracellular polyprotein containing both antigenic and structural determinants of both the 'gag' and 'pol' genes. This read-through polyprotein was found to be a closely spaced doublet of two similarly sized proteins at 220-200,000 daltons M(,r) (Pr220/200('gag-pol)). Pulse-chase kinetic studies revealed processing of Pr220/200('gag-pol) to unstable intermediate intracellular proteins of 145,000 (Pr145('pol)), 135,000 (Pr135('pol)), and 125,000 (Pr125('pol)) daltons M(,r). Further chase incubations demonstrated the appearance of an 80,000 dalton M(,r) protein, which represented the mature polymerase (p80('pol)).^ The primary intracellular Mo-MuLV 'env' gene product was found to be a glycosylated polyprotein of 83,000 daltons M(,r) (gPr83('env)). gPr83('env) contained the antigenic and structural determinants of both mature virion envelope proteins, gp70 and p15E. In addition, gPr83('env) contained unique peptide sequences not present in either gp70 or p15E. The subglycosylated form of gPr83('env) had a molecular weight of 62,000 daltons (Pr62('env)).^ Virion core proteins of R-MuLV and Mo-MuLV were examined. Structural homology was observed betwen p30s and p10s. Significant structural non-homology was demonstrated between p15s and pp12s. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retroviruses are RNA viruses that replicate through a double-stranded DNA intermediate. The viral enzyme reverse transcriptase copies the retroviral genomic RNA into this DNA intermediate through the process of reverse transcription. Many variables can affect the fidelity of reverse transcriptase during reverse transcription, including specific sequences within the retroviral genome. ^ Previous studies have observed that multiple cloning sites (MCS) and sequences predicted to form stable hairpin structures are hotspots for deletion during retroviral replication. The studies described in this dissertation were performed to elucidate the variables that affect the stability of MCS and hairpin structures in retroviral vectors. Two series of retroviral vectors were constructed and characterized in these studies. ^ Spleen necrosis virus-based vectors were constructed containing separate MCS insertions of varying length, orientation, and symmetry. The only MCS that was a hotspot for deletion formed a stable hairpin structure. Upon more detailed study, the MCS previously reported as a hotspot for deletion was found to contain a tandem linker insertion that formed a hairpin structure. Murine leukemia virus-based vectors were constructed containing separate sequence insertions of either inverted repeat symmetry (122IR) that could form a hairpin structure, or little symmetry (122c) that would form a less stable structure. These insertions were made into either the neomycin resistance marker ( neo) or the hygromycin resistance marker (hyg) of the vector. 122c was stable in both neo and hyg, while 122IR was preferentially deleted in neo and was remarkably unstable in hyg. ^ These results suggest that MCS are hotspots for deletion in retroviral vectors if they can form hairpin structures, and that hairpin structures can be highly unstable at certain locations in retroviral vectors. This information may contribute to improved design of retroviral vectors for such uses as human gene therapy, and will contribute to a greater understanding of the basic science of retroviral reverse transcription. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Retroviruses uniquely co-package two copies of their genomic RNA within each virion. The two copies are used as templates for synthesis of the proviral DNA during the process of reverse transcription. Two template switches are required to complete retroviral DNA synthesis by the retroviral enzyme, reverse transcriptase. With two RNA genomes present in the virion, reverse transcriptase can make template switches utilizing only one of the RNA templates (intramolecular) or utilizing both RNA templates (intermolecular) during the process of reverse transcription. The results presented in this study show that during a single cycle of Moloney murine leukemia virus replication, both nonrecombinant and recombinant proviruses predominantly underwent intramolecular minus- and plus-strand transfers during the process of reverse transcription. This is the first study to examine the nature of the required template switches occurring during MLV replication and these results support the previous findings for SNV, and the hypothesis that the required template switches are ordered events. This study also determined rates for deletion and a rate of recombination for a single cycle of MLV replication. The rates reported here are comparable to the rates previously reported for both SNV and MLV. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many lines of clinical and experimental evidence indicate a viral role in carcinogenesis (1-6). Our access to patient plasma, serum, and tissue samples from invasive breast cancer (N=19), ductal carcinoma in situ (N=13), malignant ovarian cancer (N=12), and benign ovarian tumors (N=9), via IRB-approved and informed consent protocols through M.D. Anderson Cancer Center, as well as normal donor plasmas purchased from Gulf Coast Regional Blood Center (N=6), has allowed us to survey primary patient blood and tissue samples, healthy donor blood from the general population, as well as commercially available human cell lines for the presence of human endogenous retrovirus K (HERV-K) Env viral RNA (vRNA), protein, and viral particles. We hypothesize that HERV-K proteins are tumor-associated antigens and as such can be profiled and targeted in patients for diagnostic and therapeutic purposes. To test this hypothesis, we employed isopycnic ultracentrifugation, a microplate-based reverse transcriptase enzyme activity assay, reverse transcription – polymerase chain reaction (RT-PCR), cDNA sequencing, SDS-PAGE and western blotting, immunofluorescent staining, confocal microscopy, and transmission electron microscopy to evaluate v HERV-K activation in cancer. Data from large numbers of patients tested by reverse transcriptase activity assay were analyzed statistically by t-test to determine the potential use of this assay as a diagnostic tool for cancer. Significant reverse transcriptase enzyme activity was detected in 75% of ovarian cancer patients, 53.8% of ductal carcinoma in situ patient, and 42.1% of invasive breast cancer patient samples. Only 11.1% of benign ovarian patient and 16.7% of normal donor samples tested positive. HERV-K Env vRNA, or Env SU were detected in the majority of cancer types screened, as demonstrated by the results shown herein, and were largely absent in normal controls. These findings support our hypothesis that the presence of HERV-K in patient blood circulation is an indicator of cancer or pre-malignancy in vivo, that the presence of HERV-K Env on tumor cell surfaces is indicative of malignant phenotype, and that HERV-K Env is a tumor-associated antigen useful not only as a diagnostic screening tool to predict patient disease status, but also as an exploitable therapeutic target for various novel antibody-based immunotherapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DNA-directed nucleoside analogues, such as ara-C, fludarabine, and gemcitabine, are antimetabolites effective in the treatment of a variety of cancers. However, resistance to nucleoside analogue-based chemotherapy in treatments is still a major problem in therapy. Therefore, it is essential to develop rationales for optimizing the use of nucleoside analogues in combination with other anticancer drugs or modalities such as radiation. The present study focuses on establishing mechanism-based combination strategy to overcome resistance to nucleoside analogues. ^ I hypothesized that the cytostatic concentrations of nucleoside analogues may cause S-phase arrest by activating an S-phase checkpoint that consists of a series of kinases. This may allow cells to repair damaged DNA over time and spare cytotoxicity. Thus, the ability of cells to enact an S-phase arrest in response to incorporation of potentially lethal amounts of nucleoside analogue may serve as a mechanism of resistance to S-phase-specific agents. As a corollary, the addition of a kinase inhibitor, such as UCN-01, may dysregulate the checkpoint response and abrogate the survival of S-phase-arrested cells by suppression of the survival signaling pathways. Using gemcitabine as a model of S-phase-specific nucleoside analogues in human acute myelogenous leukemia ML-1 cells, I demonstrated that cells arrested in S-phase in response to cytostatic conditions. Proliferation continued after washing the cells into drug-free medium, suggesting S-phase arrest served as a resistance mechanism of cancer cells to spare cytotoxicity of nucleoside analogues. However, nontoxic concentrations of UCN-01 rapidly killed S-phase-arrested cells by apoptosis. Furthermore, the molecular mechanism for UCN-01-induced apoptosis in S-phase-arrested cells was through inhibition of survival pathways associated with these cells. In this regard, suppression of the PI 3-kinase-Akt-Bad survival pathway as well as the NF-κB signaling pathway were associated with induction of apoptosis in S-phase-arrested cells by UCN-01, whereas the Ras-Raf-MEK-ERK pathway appeared not involved. This study has provided the rationales and strategies for optimizing the design of effective combination therapies to overcome resistance to nucleoside analogues. In fact, a clinical trial of the combination of ara-C with UCN-01 to treat relapsed or refractory AML patients has been initiated at U.T.M.D. Anderson Cancer Center. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uptake, metabolism, and metabolic effects of the antitumor tricyclic nucleoside (TCN, NSC-154020) were studied in vitro. Uptake of TCN by human erythrocytes was concentrative, resulting mainly from the rapid intracellular phosphorylation of TCN. At high TCN doses, however, unchanged TCN was also concentrated within the erythrocytes. The initial linear rate of TCN uptake was saturable and obeyed Michaelis-Menten kinetics. TCN was metabolized chiefly to its 5'-monophosphate not only by human erythrocytes but also by wild-type Chinese hamster ovary (CHO) cells. In addition, three other metabolites were detected by means of high-performance liquid chromatography. The structures of these metabolites were elucidated by ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and further confirmed by incubations with catabolic enzymes and intact wild-type or variant CHO cells. All were novel types of oxidative degradation products of TCN. Two are proposed to be (alpha) and (beta) anomers of a D-ribofuranosyl nucleoside with a pyrimido{4,5-c}pyridazine-4-one base structure. The third metabolite is most likely the 5'-monophosphate of the (beta) anomer. A CHO cell line deficient in adenosine kinase activity failed to phosphorylate either TCN or the (beta) anomer. No further phosphorylation of the 5'-monophosphates by normal cells occurred. Although the pathways leading to the formation of these TCN metabolites have not been proven, a mechanism is proposed to account for the above observations. The same adenosine kinase-deficient CHO cells were resistant to 500 (mu)M TCN, while wild-type cells could not clone in the presence of 20 (mu)M TCN. Simultaneous addition of purines, pyrimidines, and purine precursors failed to reverse this toxicity. TCN-treatment strongly inhibited formate or glycine incorporation into ATP and GTP of wild-type CHO cells. Hypoxanthine incorporation inhibited to a lesser degree, with the inhibition of incorporation into GTP being more pronounced. Although precursor incorporation into GTP was inhibited, GTP concentrations were elevated rather than reduced after 4-hr incubations with 20 (mu)M or 50 (mu)M TCN. These results suggested an impairment of GTP utilization. TCN (50 (mu)M) inhibited leucine and thymidine incorporation into HClO(,4)-insoluble material to 30-35% of control throughout 5-hr incubations. Incorporation of five other amino acids was inhibited to the same extent as leucine. Pulse-labeling assays (45 min) with uridine, leucine, and thymidine failed to reveal selective inhibition of DNA or protein synthesis by 0.05-50 (mu)M TCN; however, the patterns of inhibition were similar to those of known protein synthesis inhibitors. TCN 5'-monophosphate inhibited leucine incorporation by rabbit reticulocyte lysates; the inhibition was 2000 times less potent than that of cycloheximide. The 5'-monophosphate failed to inhibit a crude nuclear DNA-synthesizing system. Although TCN 5'-monophosphate apparently inhibits purine synthesis de novo, its cytotoxicity is not reversed by exogenous purines. Consequently, another mechanism such as direct inhibition of protein synthesis is probably a primary mechanism of toxicity. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleoside analogues are antimetabolites effective in the treatment of a wide variety of solid tumors and hematological malignancies. Upon being metabolized to their active triphosphate form, these agents are incorporated into DNA during replication or excision repair synthesis. Because DNA polymerases have a greatly decreased affinity for primers terminated by most nucleoside analogues, their incorporation causes stalling of replication forks. The molecular mechanisms that recognize blocked replication may contribute to drug resistance but have not yet been elucidated. Here, several molecules involved in sensing nucleoside analogue-induced stalled replication forks have been identified and examined for their contribution to drug resistance. ^ The phosphorylation of the DNA damage sensor, H2AX, was characterized in response to nucleoside analogues and found to be dependent on both time and drug concentration. This response was most evident in the S-phase fraction and was associated with an inhibition of DNA synthesis, S-phase accumulation, and activation of the S-phase checkpoint pathway (Chk1-Cdc25A-Cdk2). Exposure of the Chk1 inhibitor, 7-hydroxystaurosporine (UCN-01), to cultures previously treated with nucleoside analogues caused increased apoptosis, clonogenic death, and a further log-order increase in H2AX phosphorylation, suggesting enhanced DNA damage. Ataxia-telangiectasia mutated (ATM) has been identified as a key DNA damage signaling kinase for initiating cell cycle arrest, DNA repair, and apoptosis while the Mre11-Rad50-Nbs1 (MRN) complex is known for its functions in double-strand break repair. Activated ATM and the MRN complex formed distinct nuclear foci that colocalized with phosphorylated H2AX after inhibition of DNA synthesis by the nucleoside analogues, gemcitabine, ara-C, and troxacitabine. Since double-strand breaks were undetectable, this response was likely due to stalling of replication forks. A similar DNA damage response was observed in human lymphocytes after exposure to ionizing radiation and in acute myelogenous leukemia blasts during therapy with the ara-C prodrug, CP-4055. Deficiencies in ATM, Mre11, and Rad50 led to a two- to five-fold increase in gemcitabine sensitivity, suggesting that these molecules contribute to drug resistance. Based on these results, a model is proposed for the sensing of nucleoside analogue-induced stalled replication forks that includes H2AX, ATM, and the Mre11-Rad50-Nbs1 complex. ^