18 resultados para methyltransferase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The molecular mechanisms of endometrail cancer invasion are poorly understood. S100A4, a member of the S100 Ca2+-binding protein family, was identified by oligonucleotide microarray qRT-PCR, and IHC, to be highly overexpressed in invasive endometrial carcinomas compared to non-invasive tumors. HEC-1A endometrial cancer cells transfected with S100A4 siRNA had undetectable S100A4 protein, decreased migration and invasion. The mechanism of S100A4 upregulation in endometrial cancer remains unclear. Methylation of the S100A4 gene was detected in benign endometrial glands and grade 1 tumors with no S100A4 expression. In contrast, grade 3 endometrioid tumors with high S100A4 expression showed no methylation of the gene. 5-Aza-2'-deoxycytidine, an inhibitor of DNA methyltransferase, induced the expression of S100A4 in the less invasive EC cell line, KLE, in which the S100A4 gene is hypermethylated and minimally expressed. S100A4 was induced during TGF-β1-triggered cell scattering in HEC-1A cells, in which S100A4 was demethylated. Transfection of HEC-1A cells with S100A4 siRNA significantly reduced the effect of TGF-β1 on basal migration and invasion. Our preliminary data suggested that this upregulation was mediated by the transcription factor Snail. One Snail binding consensus site was found in the region where DNA methylation was closely correlated with S100A4 gene expression. Chromatin immunoprecipitation assay confirmed the binding of Snail to this consensus site in HEC-1A cells. In SPEC2 endometrial cancer cells, loss of Snail leads to repressed S100A4 gene expression. Similar to S100A4, Snail was overexpressed in aggressive endometrial tumors. Our study suggested that the S100A4 gene was demethylated and further upregulated by the TGF-β1 and Snail pathway in invasive endometrial cancer. S100A4 could potentially serve as a good molecular marker for invasiveness and a target for therapeutic intervention for advanced endometrial cancer. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary metabolites are produced by numerous organisms and can either be benign to humans or harmful. Genes involved in the synthesis and transport of these secondary metabolites are frequently found in gene clusters, which are often located in subtelomeric regions of the chromosome. These clusters are often coordinately regulated, being almost exclusively dependent on transcription factors that are located within the clusters themselves. Secondary metabolites are also regulated by a variety of factors, including nutritional factors, environmental factors and developmental processes. Gliotoxin, which is produced by a variety of Aspergillus species, Trichoderma species, and Penicillium species, exhibits immunosuppressive properties and has therefore been the subject of research for many laboratories. There have been a few proteins shown to regulate the gliotoxin cluster, most notably GliZ, a Zn2Cys6 binuclear finger transcription factor that lies within the cluster, and LaeA, a putative methyltransferase that globally regulates secondary metabolism clusters within numerous fungal organisms, although no study has demonstrated the direct binding of any protein to a promoter region in the gliotoxin cluster. I report here two novel proteins, GipA, a C2H2 transcription factor and GipB, a hybrid sensor kinase, which are involved in regulating the gliotoxin biosynthetic cluster. GipA plays an important role in gliotoxin production, as high-copy expression of gipA induces gliotoxin biosynthesis and loss of gipA reduces gliotoxin biosynthesis by 50%. GipB is also involved in regulating gliotoxin production, as high-copy expression of gipB induces gliotoxin biosynthesis, but only during certain stages of asexual development. Furthermore, loss of gipB reduces gliotoxin biosynthesis by 10%. Based on data obtained from this project, I propose a model for the regulation of gliA, the efflux pump of the gliotoxin cluster, which involves GipB signaling through both GliZ and GipA. I propose that GliZ and GipA are interdependent, as mutation of the GipA DNA binding site in the gliA promoter negatively affects both GliZ-mediated and GipA-mediated induction of gliA. This is further supported by the fact that GliZ cannot fully induce gliA in the absence of GipA and vice versa. This is the first time that anyone has shown evidence of a protein directly binding to the gliotoxin cluster. Even though biosynthetic clusters are often coordinately regulated, my model raises the possibility that gliA is independently regulated, as the layout of the binding site in the gliA promoter is not present upstream of any other genes in the gliotoxin cluster, except for gliZ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of DNA cytosine methylation on H-ras promoter activity was assessed using a transient expression system employing the plasmid H-rasCAT (NaeI H-ras promoter linked to the chloramphenicol acetyltransferase (CAT) gene). This 551 bp promoter is 80% GC rich, enriched with 168 CpG dinucleotides, and contains six functional GC box elements which represent major DNA methylation target sites. Prokaryotic methyltransferases HhaI (CGm$\sp5$CG) and HpaII (Cm$\sp5$CGG) alone or in combination with a human placental methyltransferase (HP MTase) were used to introduce methyl groups at different CpG sites within the promoter. To test for functional promoter activity, the methylated plasmids were introduced into CV-1 cells and CAT activity assessed 48 h post-transfection. Methylation at specific HhaI and HpaII sites reduced CAT expression by 70%, whereas more extensive methylation at generalized CpG sites with HP MTase inactivated the promoter $>$95%. The inhibition of H-ras promoter activity was not attributable to methylation-induced differences in DNA uptake or stability in the cell, topological form of the plasmid, or methylation effects in nonpromoter regions. We also observed that DNA cytosine methylation of a 360 bp promoter fragment by HP MTase induced a local change in DNA conformation. Using three independent methodologies (nitrocellulose filter binding assays, gel mobility shifts, and Southwestern blots), we determined that this change in promoter conformation affected the interaction of nuclear proteins with cis-regulatory sequences residing in the promoter region. The results provide evidence to suggest that DNA methylation may regulate gene expression by inducing changes in local promoter conformation which in turn alters the interactions between DNA and protein factors required for transcription. The results provide supportive evidence for the hypothesis of Cedar and Riggs, who postulated that DNA methylation may regulate gene expression by altering the binding affinities of proteins for DNA. ^