260 resultados para medical school project
Resumo:
An oral interview with Dianna Milewicz, M.D., Ph.D., Professor and Vice Chairman of the Department of Internal Medicine at The University of Texas Medical School at Houston and Director of the M.D./Ph.D. Program and co-Director of the Biomedical Engineering Center. Her research interests include the genetic basis of cardiovascular diseases, and understanding the effect of identified mutations on protein function. She has recently established a genetic core laboratory to provide molecular biology and genetic expertise to clinicians who want to initiate genetic studies on their patient populations.
Resumo:
An oral interview with Dr. Anna Steinberger, who taught and conducted basic research in Reproductive Biology and served as Assistant Dean for Faculty Affairs at UT Medical School-Houston. Her research yielded over 250 scientific articles, books, and book chapters for which she received numerous awards and recognitions in the USA and abroad.
Resumo:
The introduction of new medical treatments in recent years, commonly referred to as highly active antiretroviral therapy, has greatly increased the survival of patients with HIV/AIDS. As patients with HIV/AIDS continue to live longer, other important health-related outcomes, such as quality of life (QOL), should be thoroughly studied. There is also evidence that racial/ethnic minorities are disproportionately affected by HIV/AIDS, but potential health disparities among individuals already infected with HIV/AIDS have not been adequately examined in ethnically diverse populations. The purpose of this dissertation was to: (1) examine the impact of both demographic and behavioral variables on functional status and overall QOL among a population of ethnically diverse and economically disadvantaged HIV/AIDS patients; (2) examine the psychometric properties of a functional status measure—the Household and Leisure Time Activities questionnaire (HLTA); and (3) assess a proximal-distal theoretical framework for QOL using a full structural equation model in a population of patients with HIV/AIDS. Analyses were performed using data collected in the fall of 2000 from the project, Health and Work-Related Quality of Life and Health Risk Behaviors in a Multiethnic HIV-positive Population . Investigators from The University of Texas M.D. Anderson Cancer Center, The University of Texas-Houston Medical School, and The University of Texas School of Public Health conducted this project. The study site was the Thomas Street Clinic (TSC), a comprehensive HIV/AIDS care facility funded by the Harris County Hospital District (HCHD). TSC provides HIV/AIDS care to a diverse population of approximately 4000 medically indigent residents of Harris County. A systematic, consecutive sampling procedure yielded a sample size of 348 patients. Findings suggested that overall QOL, work-role functioning, household functioning, and leisure time functioning were impaired in this patient population. Results from the psychometric evaluation indicated that the HLTA was a reliable and valid measure of household and leisure time functioning status in a low-income multiethnic HIV-positive population. Finally, structural equation modeling of the proximal-distal QOL model suggested that this model was not a viable representation of the relationship between the study variables in this patient population. ^
Resumo:
Both TBL and PBL attempt to maximally engage the learner and both are designed to encourage interactive teaching / learning. PBL is student centered. TBL, in contrast, is typically instructor centered. The PBL Executive Committee of the UTHSC-Houston Medical School, in an attempt to capture the pedagogical advantages of PBL and of TBL, implemented a unique PBL experience into the ICE/PBL course during the final block of PBL instruction in year 2. PBL cases provided the content knowledge for focused learning. The subsequent, related TBL exercises fostered integration / critical thinking about each of these cases. [See PDF for complete abstract]
Resumo:
Expert Panel: Documenting Teaching Scholarship for Promotion and Tenure Lemuel Moye, School of Public Health Miguel daCunha, School of Nursing William Tate, Dental School Katherine Loveland, Medical School
Resumo:
Regulation of glutamate transporters accompanies plasticity of some glutamatergic synapses. The regulation of glutamate uptake at the Aplysia sensorimotor synapse during long-term facilitation (LTF) was investigated. Previously, increases in levels of ApGT1 (Aplysia glutamate transporter 1) in synaptic membranes were found to be related to long-term increases in glutamate uptake. In this study, we found that regulation of ApGT1 during LTF appears to occur post-translationally. Serotonin (5-HT) a transmitter that induces LTF did not increase synthesis of ApGT1. A pool of ApGT1 appears to exist in sensory neuron somata, which is transported to the terminals by axonal transport. Blocking the rough endoplasmic reticulum-Golgi-trans-Golgi network (TGN) pathway with Brefeldin A prevented the 5-HT-induced increase of ApGT1 in terminals. Also, 5-HT produced changes in post-translational modifications of ApGT1 as well as changes in the levels of an ApGT1-co-precipitating protein. These results suggest that regulation of trafficking of ApGT1 from the vesicular trafficking system (rough endoplasmic reticulum-Golgi-TGN) in the sensory neuron somata to the terminals by post-translational modifications and protein interactions appears to be the mechanism underlying the increase in ApGT1, and thus, glutamate uptake during memory formation.
Resumo:
Introduction: Concerns about the quality of physician education have changed current medical education practices. Learners must demonstrate competency in core areas, rather than solely participating in educational activities. Academic medical institutions are challenged with identifying leaders to direct curricular and evaluation reforms. An innovative partnership between the University of Houston College of Education and Baylor College of Medicine, the University of Texas Medical School at Houston, and the University of Texas Dental Branch at Houston offers a Masters of Education in Teaching degree with an emphasis in Health Sciences. Courses encompass fundamental areas including curriculum, instruction, technology, measurement, research design and statistics. [See PDF for complete abstract]
Resumo:
Present models of long-term sensitization in Aplysia californica indicate that the enhanced behavioral response is due, at least in part, to outgrowth of sensory neurons mediating defensive withdrawal reflexes. Presumably, this outgrowth strengthens pre-existing connections by formation of new synapses with follower neurons. However, the relationship between the number of sensorimotor contacts and the physiological strength of the connection has never been examined in intact ganglia. As a first step in addressing this issue, we used confocal microscopy to examine sites of contact between sensory and motor neurons in naive animals. Our results revealed relatively few contacts between physiologically connected cells. In addition, the number of contact sites was proportional to the amplitude of the EPSP elicited in the follower motor neuron by direct stimulation of the sensory neuron. This is the first time such a correlation has been observed in the central nervous system. Serotonin is the neurotransmitter most closely examined for its role in modulating synaptic strength at the sensorimotor synapse. However, the structural relationship of serotonergic processes and sensorimotor synapses has never been examined. Surprisingly, serotonergic processes usually made contact with sensory and motor neurons at sites located relatively distant from the sensorimotor synapse. This result implies that heterosynaptic regulation is due to nondirected release of serotonin into the neuropil.
Resumo:
Background: Sleep disorders are an important cause of morbidity among our population with billions of dollars spent on direct and indirect costs attributed to sleep disorders. In spite of raising prevalence and morbidity, surveys have shown inadequate education in sleep medicine at all levels at medical school. According to national sleep disorders research plan data, in 1990 about 37 % of medical schools did not offer any sleep education and of the schools which offered it, the average time devoted to sleep medicine was about 2 hours. Sleep disorders have found to be uniformly under diagnosed in primary care settings. [See PDF for complete abstract]
Resumo:
All U.S. medical schools require some medical ethics education and must now ensure that their graduates, residents, and faculty exhibit competence in the area of professionalism and professional medical ethics. However, there remain many challenges to implementing formal ethics and professionalism education into medical school curricula. [See PDF for complete abstract]
Resumo:
BACKGROUND: A key aspect of representations for object recognition and scene analysis in the ventral visual stream is the spatial frame of reference, be it a viewer-centered, object-centered, or scene-based coordinate system. Coordinate transforms from retinocentric space to other reference frames involve combining neural visual responses with extraretinal postural information. METHODOLOGY/PRINCIPAL FINDINGS: We examined whether such spatial information is available to anterior inferotemporal (AIT) neurons in the macaque monkey by measuring the effect of eye position on responses to a set of simple 2D shapes. We report, for the first time, a significant eye position effect in over 40% of recorded neurons with small gaze angle shifts from central fixation. Although eye position modulates responses, it does not change shape selectivity. CONCLUSIONS/SIGNIFICANCE: These data demonstrate that spatial information is available in AIT for the representation of objects and scenes within a non-retinocentric frame of reference. More generally, the availability of spatial information in AIT calls into questions the classic dichotomy in visual processing that associates object shape processing with ventral structures such as AIT but places spatial processing in a separate anatomical stream projecting to dorsal structures.
Resumo:
The neuropeptide Phe-Met-Arg-Phe-NH(2) (FMRFa) can induce transcription-dependent long-term synaptic depression (LTD) in Aplysia sensorimotor synapses. We investigated the role of the ubiquitin-proteasome system and the regulation of one of its components, ubiquitin C-terminal hydrolase (ap-uch), in LTD. LTD was sensitive to presynaptic inhibition of the proteasome and was associated with upregulation of ap-uch mRNA and protein. This upregulation appeared to be mediated by CREB2, which is generally regarded as a transcription repressor. Binding of CREB2 to the promoter region of ap-uch was accompanied by histone hyperacetylation, suggesting that CREB2 cannot only inhibit but also promote gene expression. CREB2 was phosphorylated after FMRFa, and blocking phospho-CREB2 blocked LTD. In addition to changes in the expression of ap-uch, the synaptic vesicle-associated protein synapsin was downregulated in LTD in a proteasome-dependent manner. These results suggest that proteasome-mediated protein degradation is engaged in LTD and that CREB2 may act as a transcription activator under certain conditions.
Resumo:
Exogenous recombinant human transforming growth factor beta-1 (TGF-beta1) induced long-term facilitation of Aplysia sensory-motor synapses. In addition, 5-HT-induced facilitation was blocked by application of a soluble fragment of the extracellular portion of the TGF-beta1 type II receptor (TbetaR-II), which presumably acted by scavenging an endogenous TGF-beta1-like molecule. Because TbetaR-II is essential for transmembrane signaling by TGF-beta, we sought to determine whether Aplysia tissues contained TbetaR-II and specifically, whether neurons expressed the receptor. Western blot analysis of Aplysia tissue extracts demonstrated the presence of a TbetaR-II-immunoreactive protein in several tissue types. The expression and distribution of TbetaR-II-immunoreactive proteins in the central nervous system was examined by immunohistochemistry to elucidate sites that may be responsive to TGF-beta1 and thus may play a role in synaptic plasticity. Sensory neurons in the ventral-caudal cluster of the pleural ganglion were immunoreactive for TbetaR-II, as well as many neurons in the pedal, abdominal, buccal, and cerebral ganglia. Sensory neurons cultured in isolation and cocultured sensory and motor neurons were also immunoreactive. TGF-beta1 affected the biophysical properties of cultured sensory neurons, inducing an increase of excitability that persisted for at least 48 hr. Furthermore, exposure to TGF-beta1 resulted in a reduction in the firing threshold of sensory neurons. These results provide further support for the hypothesis that TGF-beta1 plays a role in long-term synaptic plasticity in Aplysia.
Resumo:
Tuberculosis remains a major threat as drug resistance continues to increase. Pulmonary tuberculosis in adults is responsible for 80% of clinical cases and nearly 100% of transmission of infection. Unfortunately, since we have no animal models of adult type pulmonary tuberculosis, the most important type of disease remains largely out of reach of modern science and many fundamental questions remain unanswered. This paper reviews research dating back to the 1950's providing compelling evidence that cord factor (trehalose 6,6 dimycolate [TDM]) is essential for understanding tuberculosis. However, the original papers by Bloch and Noll were too far ahead of their time to have immediate impact. We can now recognize that the physical and biologic properties of cord factor are unprecedented in science, especially its ability to switch between two sets of biologic activities with changes in conformation. While TDM remains on organisms, it protects them from killing within macrophages, reduces antibiotic effectiveness and inhibits the stimulation of protective immune responses. If it comes off organisms and associates with lipid, TDM becomes a driver of tissue damage and necrosis. Studies emanating from cord factor research have produced (1) a rationale for improving vaccines, (2) an approach to new drugs that overcome natural resistance to antibiotics, (3) models of caseating granulomas that reproduce multiple manifestations of human tuberculosis. (4) evidence that TDM is a key T cell antigen in destructive lesions of tuberculosis, and (5) a new understanding of the pathology and pathogenesis of postprimary tuberculosis that can guide more informative studies of long standing mysteries of tuberculosis.
Resumo:
BACKGROUND: Exposure of adherent cells to DNA damaging agents, such as the bacterial cytolethal distending toxin (CDT) or ionizing radiations (IR), activates the small GTPase RhoA, which promotes the formation of actin stress fibers and delays cell death. The signalling intermediates that regulate RhoA activation and promote cell survival are unknown. PRINCIPAL FINDINGS: We demonstrate that the nuclear RhoA-specific Guanine nucleotide Exchange Factor (GEF) Net1 becomes dephosphorylated at a critical inhibitory site in cells exposed to CDT or IR. Expression of a dominant negative Net1 or Net1 knock down by iRNA prevented RhoA activation, inhibited the formation of stress fibers, and enhanced cell death, indicating that Net1 activation is required for this RhoA-mediated responses to genotoxic stress. The Net1 and RhoA-dependent signals involved activation of the Mitogen-Activated Protein Kinase p38 and its downstream target MAPK-activated protein kinase 2. SIGNIFICANCE: Our data highlight the importance of Net1 in controlling RhoA and p38 MAPK mediated cell survival in cells exposed to DNA damaging agents and illustrate a molecular pathway whereby chronic exposure to a bacterial toxin may promote genomic instability.