28 resultados para interaction studies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coagulase-negative staphylococci (CNS) are recognized as important pathogens and are particularly associated with foreign body infections. S. epidermidis accounts for approximately 75% of the infections caused by CNS. Three genes, sdrF, sdrG, and sdrH, were identified by screening a S. epidermidis genomic library with a probe encompassing the serine-aspartate dipeptide repeat-encoding region (region R) of clfA from S. aureus. SdrG has significant amino acid identity to ClfA, ClfB and other surface proteins of S. aureus. SdrG is also similar to a protein (Fbe) recently described by Nilsson, et al. (Infection and Immunity, 1998, 66:2666–73) from S. epidermidis. The N-terminal domain (A region) of SdrG was expressed as a his-tag fusion protein in E. coli. In an ELISA, this protein, rSdrG(50-597) was shown to bind specifically to fibrinogen (Fg). Western ligand blot analysis showed that SdrG binds the Bβ chain of Fg. To further characterize the rSdrG(50-597)-Fg interaction, truncates of the Fg Bβ chain were made and expressed as recombinant proteins in E. coli. SdrG was shown to bind the full-length Bβ chain (1462), as well as the N-terminal three-quarters (1-341), the N-terminal one-half (1-220) and the N-terminal one-quarter (1-95) Bβ chain constructs. rSdrG(50-597) failed to bind to the recombinant truncates that lacked the N-terminal 25 amino acid residues of this polypeptide suggesting that SdrG recognizes a site within this region of the Bβ chain. Inhibition ELISAs have shown that peptide mimetics, including β1–25, and β6–20, encompassing this 25 residue region can inhibit binding of rSdrG(50-597) to Fg coated wells. Using fluorescence polarization we were able to determine an equilibrium constant (KD) for the interaction of rSdrG(50-597) with the Fg Bβ chain peptide β1–25. The labeled peptide was shown to bind to rSdrG(50-597) with a KD of 0.14 ± 0.01μM. Because rSdrG(50-597) recognizes a site in the Fg Bβ chain close to the thrombin cleavage site, we investigated the possibility of the rSdrG(50-597) site either overlapping or lying close to this cleavage site. An ELISA showed that rSdrG(50-597) binding to thrombin-treated Fg was significantly reduced. In a clot inhibition assay rSdrG(50-597) was able to inhibit fibrin clot formation in a concentration dependent manner. Furthermore, rSdrG(50-597) was able to inhibit clot formation by preventing the release of fibrinopeptide B as determined by HPLC. To further define the interaction between rSdrG(50-597) and peptide β6–20, we utilized an alanine amino acid replacement strategy. The residues in β6–20 that appear to be important in rSdrG(50-597) binding to Fg, were confirmed by the rSdrG(273-597)-β6–20 co-crystal structure that was recently solved by our collaborators at University of Alabama-Birmingham. Additionally, rSdrG(50-597) was not able to bind to Fg from different animal species, rather it bound specifically to human Fg in an ELISA. This suggests that the sequence variation between Fg Bβ chains of different species, specifically with in the N-terminal 25 residues, affects the ability of rSdrG(50-597) binding to Fg, and this may explain why S. epidermidis is primarily a human pathogen. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Filamin is a high molecular weight (2 x 250,000) actin crosslinking protein found in a wide variety of cells and tissues. The most striking feature of filamin is its ability to crosslink F-actin filaments and cause ATP-independent gelation and contraction of F-actin solutions. The gelation of actin filaments by filamin involves binding to actin and crosslinking of the filaments by filamin self-association. In order to understand the role of filamin-actin interactions in the regulation of cytoskeletal assembly, two approaches were used. First, the structural relationship between self-association and actin-binding was examined using proteolytic fragments of filamin. Treatment of filamin with papain generated two major fragments, 90Kd and 180Kd. Upon incubation of the papain digest with F-actin and centrifugation at 100,000 x g, only the 180Kd fragment co-sedimented with F-actin. The binding of the 180Kd fragment, P180, was similar to native filamin in its sensitivity to ionic strength. Analytical gel filtration studies indicated that, unlike native filamin, P180 was monomeric and did not self-associate. Thermolysin treatment of P180 produced a 170Kd fragment, PT170, which no longer bound and co-sedimented with F-actin. These results suggested that filamin contained a discrete actin-binding domain. In order to locate the actin-binding domain, affinity purified antibodies to the papain and thermolysin sensitive regions of filamin were used in conjunction with filamin fragments generated by digestion with S. aureus V8 protease and elastase. The results indicated that the papain and thermolysin cleavage sites were close together, and, most likely, within 10Kd of one another. Taken together, these data suggest that filamin contains a discrete, internal actin-binding domain. The second approach was to use the non-crosslinking fragment P180 to develop a quantitative assay of filamin-actin binding. The binding of ('14)C-carboxyalkylated P180 was examined using the co-sedimentation assay. ('14)C-P180 binding to actin was equivalent to that of unlabelled P180 and exhibited comparable sensitivity of binding to changes in ionic strength. Within 5 min. of incubation the process had reached equilibrium. The specificity of binding was shown by the lack of binding of ('14)C-PT170. The binding of ('14)C-P180 was found to be a reversible and saturable process, with a K(,d) of 2 x 10('-7) M. . . . (Author's abstract exceeds stipulated maximum length. Discontinued here with permission of author.) UMI ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In eukaryotic cells, the ESCRTs (endosomal sorting complexes required for transport) machinery is required for cellular processes such as endosomal sorting, retroviral budding and cytokinesis. The ALG-2 interacting protein Alix is a modular adaptor protein that is critically involved in these ESCRTs-associated cellular processes and consists of an N-terminal Bro1 domain, a middle V domain and C-terminal Pro-rich domain (PRD). In these cellular processes, Alix interacts with the ESCRT-III component CHMP4 at the Bro1 domain, with HIV-1 p6 Gag or EIAV p9Gag at the V domain, and with the ESCRT-I component TSG101 at the Pro-rich domain. Here we demonstrate that the N-terminal Bro1 domain forms an intramolecular interaction with C-terminal PRD within Alix. This Bro1-PRD intramolecular interaction forms a closed conformation of Alix that autoinhibits Alix interaction with all of these partner proteins. Moreover, the binding of Ca2+-activated ALG-2 to the PRD of Alix relieves the autoinhibitory intramolecular interaction, resulting in an open conformation of Alix which is able to interact with all of these partner proteins. The partner proteins bound to Alix in turn maintain Alix in the open conformation after ALG-2 dissociation with Alix. Consistent with the effect of Ca2+-activated ALG-2 on opening/activating Alix in these ESCRTs-associated functions, ALG-2 overexpression accelerates EGF-induced degradation of EGFR in an Alix-dependent manner. These findings discover an intrinsic autoinhibitory mechanism of Alix and a two-step process to activate/open Alix and then keep Alix active/open. This study has solved long-standing issues on the regulations of Alix in ESCRTs-associated functions and the role of ALG-2-Alix interaction, and may serve as the structural basis for further studies about Alix regulations. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypertension (HT) is mediated by the interaction of many genetic and environmental factors. Previous genome-wide linkage analysis studies have found many loci that show linkage to HT or blood pressure (BP) regulation, but the results were generally inconsistent. Gene by environment interaction is among the reasons that potentially explain these inconsistencies between studies. Here we investigate influences of gene by smoking (GxS) interaction on HT and BP in European American (EA), African American (AA) and Mexican American (MA) families from the GENOA study. A variance component-based method was utilized to perform genome-wide linkage analysis of systolic blood pressure (SBP), diastolic blood pressure (DBP), and HT status, as well as bivariate analysis for SBP and DBP for smokers, non-smokers, and combined groups. The most significant results were found for SBP in MA. The strongest signal was for chromosome 17q24 (LOD = 4.2), increased to (LOD = 4.7) in bivariate analysis but there was no evidence of GxS interaction at this locus (p = 0.48). Two signals were identified only in one group: on chromosome 15q26.2 (LOD = 3.37) in non-smokers and chromosome 7q21.11 (LOD = 1.4) in smokers, both of which had strong evidence for GxS interaction (p = 0.00039 and 0.009 respectively). There were also two other signals, one on chromosome 20q12 (LOD = 2.45) in smokers, which became much higher in the combined sample (LOD = 3.53), and one on chromosome 6p22.2 (LOD = 2.06) in non-smokers. Neither peak had very strong evidence for GxS interaction (p = 0.08 and 0.06 respectively). A fine mapping association study was performed using 200 SNPs in 30 genes located under the linkage signals on chromosomes 15 and 17. Under the chromosome 15 peak, the association analysis identified 6 SNPs accounting for a 7 mmHg increase in SBP in MA non-smokers. For the chromosome 17 linkage peak, the association analysis identified 3 SNPs accounting for a 6 mmHg increase in SBP in MA. However, none of these SNPs was significant after correcting for multiple testing, and accounting for them in the linkage analysis produced very small reductions in the linkage signal. ^ The linkage analysis of BP traits considering the smoking status produced very interesting signals for SBP in the MA population. The fine mapping association analysis gave some insight into the contribution of some SNPs to two of the identified signals, but since these SNPs did not remain significant after multiple testing correction and did not explain the linkage peaks, more work is needed to confirm these exploratory results and identify the culprit variations under these linkage peaks. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous studies have been carried out to try to better understand the genetic predisposition for cardiovascular disease. Although it is widely believed that multifactorial diseases such as cardiovascular disease is the result from effects of many genes which working alone or interact with other genes, most genetic studies have been focused on identifying of cardiovascular disease susceptibility genes and usually ignore the effects of gene-gene interactions in the analysis. The current study applies a novel linkage disequilibrium based statistic for testing interactions between two linked loci using data from a genome-wide study of cardiovascular disease. A total of 53,394 single nucleotide polymorphisms (SNPs) are tested for pair-wise interactions, and 8,644 interactions are found to be significant with p-values less than 3.5×10-11. Results indicate that known cardiovascular disease susceptibility genes tend not to have many significantly interactions. One SNP in the CACNG1 (calcium channel, voltage-dependent, gamma subunit 1) gene and one SNP in the IL3RA (interleukin 3 receptor, alpha) gene are found to have the most significant pair-wise interactions. Findings from the current study should be replicated in other independent cohort to eliminate potential false positive results.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interaction effect is an important scientific interest for many areas of research. Common approach for investigating the interaction effect of two continuous covariates on a response variable is through a cross-product term in multiple linear regression. In epidemiological studies, the two-way analysis of variance (ANOVA) type of method has also been utilized to examine the interaction effect by replacing the continuous covariates with their discretized levels. However, the implications of model assumptions of either approach have not been examined and the statistical validation has only focused on the general method, not specifically for the interaction effect.^ In this dissertation, we investigated the validity of both approaches based on the mathematical assumptions for non-skewed data. We showed that linear regression may not be an appropriate model when the interaction effect exists because it implies a highly skewed distribution for the response variable. We also showed that the normality and constant variance assumptions required by ANOVA are not satisfied in the model where the continuous covariates are replaced with their discretized levels. Therefore, naïve application of ANOVA method may lead to an incorrect conclusion. ^ Given the problems identified above, we proposed a novel method modifying from the traditional ANOVA approach to rigorously evaluate the interaction effect. The analytical expression of the interaction effect was derived based on the conditional distribution of the response variable given the discretized continuous covariates. A testing procedure that combines the p-values from each level of the discretized covariates was developed to test the overall significance of the interaction effect. According to the simulation study, the proposed method is more powerful then the least squares regression and the ANOVA method in detecting the interaction effect when data comes from a trivariate normal distribution. The proposed method was applied to a dataset from the National Institute of Neurological Disorders and Stroke (NINDS) tissue plasminogen activator (t-PA) stroke trial, and baseline age-by-weight interaction effect was found significant in predicting the change from baseline in NIHSS at Month-3 among patients received t-PA therapy.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the adequacy of computerized vital records in Texas for conducting etiologic studies on neural tube defects (NTDs), using the revised and expanded National Centers for Health Statistics vital record forms introduced in Texas in 1989.^ Cases of NTDs (anencephaly and spina bifida) among Harris County (Houston) residents were identified from the computerized birth and death records for 1989-1991. The validity of the system was then measured against cases ascertained independently through medical records and death certificates. The computerized system performed poorly in its identification of NTDs, particularly for anencephaly, where the false positive rate was 80% with little or no improvement over the 3-year period. For both NTDs the sensitivity and predictive value positive of the tapes were somewhat higher for Hispanic than non-Hispanic mothers.^ Case control studies were conducted utilizing the tape set and the independently verified data set, using controls selected from the live birth tapes. Findings varied widely between the data sets. For example, the anencephaly odds ratio for Hispanic mothers (vs. non-Hispanic) was 1.91 (CI = 1.38-2.65) for the tape file, but 3.18 (CI = 1.81-5.58) for verified records. The odds ratio for diabetes was elevated for the tape set (OR = 3.33, CI = 1.67-6.66) but not for verified cases (OR = 1.09, CI = 0.24-4.96), among whom few mothers were diabetic. It was concluded that computerized tapes should not be solely relied on for NTD studies.^ Using the verified cases, Hispanic mother was associated with spina bifida, and Hispanic mother, teen mother, and previous pregnancy terminations were associated with anencephaly. Mother's birthplace, education, parity, and diabetes were not significant for either NTD.^ Stratified analyses revealed several notable examples of statistical interaction. For anencephaly, strong interaction was observed between Hispanic origin and trimester of first prenatal care.^ The prevalence was 3.8 per 10,000 live births for anencephaly and 2.0 for spina bifida (5.8 per 10,000 births for the combined categories). ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional comparison of standardized mortality ratios (SMRs) can be misleading if the age-specific mortality ratios are not homogeneous. For this reason, a regression model has been developed which incorporates the mortality ratio as a function of age. This model is then applied to mortality data from an occupational cohort study. The nature of the occupational data necessitates the investigation of mortality ratios which increase with age. These occupational data are used primarily to illustrate and develop the statistical methodology.^ The age-specific mortality ratio (MR) for the covariates of interest can be written as MR(,ij...m) = ((mu)(,ij...m)/(theta)(,ij...m)) = r(.)exp (Z('')(,ij...m)(beta)) where (mu)(,ij...m) and (theta)(,ij...m) denote the force of mortality in the study and chosen standard populations in the ij...m('th) stratum, respectively, r is the intercept, Z(,ij...m) is the vector of covariables associated with the i('th) age interval, and (beta) is a vector of regression coefficients associated with these covariables. A Newton-Raphson iterative procedure has been used for determining the maximum likelihood estimates of the regression coefficients.^ This model provides a statistical method for a logical and easily interpretable explanation of an occupational cohort mortality experience. Since it gives a reasonable fit to the mortality data, it can also be concluded that the model is fairly realistic. The traditional statistical method for the analysis of occupational cohort mortality data is to present a summary index such as the SMR under the assumption of constant (homogeneous) age-specific mortality ratios. Since the mortality ratios for occupational groups usually increase with age, the homogeneity assumption of the age-specific mortality ratios is often untenable. The traditional method of comparing SMRs under the homogeneity assumption is a special case of this model, without age as a covariate.^ This model also provides a statistical technique to evaluate the relative risk between two SMRs or a dose-response relationship among several SMRs. The model presented has application in the medical, demographic and epidemiologic areas. The methods developed in this thesis are suitable for future analyses of mortality or morbidity data when the age-specific mortality/morbidity experience is a function of age or when there is an interaction effect between confounding variables needs to be evaluated. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My dissertation focuses on developing methods for gene-gene/environment interactions and imprinting effect detections for human complex diseases and quantitative traits. It includes three sections: (1) generalizing the Natural and Orthogonal interaction (NOIA) model for the coding technique originally developed for gene-gene (GxG) interaction and also to reduced models; (2) developing a novel statistical approach that allows for modeling gene-environment (GxE) interactions influencing disease risk, and (3) developing a statistical approach for modeling genetic variants displaying parent-of-origin effects (POEs), such as imprinting. In the past decade, genetic researchers have identified a large number of causal variants for human genetic diseases and traits by single-locus analysis, and interaction has now become a hot topic in the effort to search for the complex network between multiple genes or environmental exposures contributing to the outcome. Epistasis, also known as gene-gene interaction is the departure from additive genetic effects from several genes to a trait, which means that the same alleles of one gene could display different genetic effects under different genetic backgrounds. In this study, we propose to implement the NOIA model for association studies along with interaction for human complex traits and diseases. We compare the performance of the new statistical models we developed and the usual functional model by both simulation study and real data analysis. Both simulation and real data analysis revealed higher power of the NOIA GxG interaction model for detecting both main genetic effects and interaction effects. Through application on a melanoma dataset, we confirmed the previously identified significant regions for melanoma risk at 15q13.1, 16q24.3 and 9p21.3. We also identified potential interactions with these significant regions that contribute to melanoma risk. Based on the NOIA model, we developed a novel statistical approach that allows us to model effects from a genetic factor and binary environmental exposure that are jointly influencing disease risk. Both simulation and real data analyses revealed higher power of the NOIA model for detecting both main genetic effects and interaction effects for both quantitative and binary traits. We also found that estimates of the parameters from logistic regression for binary traits are no longer statistically uncorrelated under the alternative model when there is an association. Applying our novel approach to a lung cancer dataset, we confirmed four SNPs in 5p15 and 15q25 region to be significantly associated with lung cancer risk in Caucasians population: rs2736100, rs402710, rs16969968 and rs8034191. We also validated that rs16969968 and rs8034191 in 15q25 region are significantly interacting with smoking in Caucasian population. Our approach identified the potential interactions of SNP rs2256543 in 6p21 with smoking on contributing to lung cancer risk. Genetic imprinting is the most well-known cause for parent-of-origin effect (POE) whereby a gene is differentially expressed depending on the parental origin of the same alleles. Genetic imprinting affects several human disorders, including diabetes, breast cancer, alcoholism, and obesity. This phenomenon has been shown to be important for normal embryonic development in mammals. Traditional association approaches ignore this important genetic phenomenon. In this study, we propose a NOIA framework for a single locus association study that estimates both main allelic effects and POEs. We develop statistical (Stat-POE) and functional (Func-POE) models, and demonstrate conditions for orthogonality of the Stat-POE model. We conducted simulations for both quantitative and qualitative traits to evaluate the performance of the statistical and functional models with different levels of POEs. Our results showed that the newly proposed Stat-POE model, which ensures orthogonality of variance components if Hardy-Weinberg Equilibrium (HWE) or equal minor and major allele frequencies is satisfied, had greater power for detecting the main allelic additive effect than a Func-POE model, which codes according to allelic substitutions, for both quantitative and qualitative traits. The power for detecting the POE was the same for the Stat-POE and Func-POE models under HWE for quantitative traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anthrax outbreaks in the United States and Europe and its potential use as a bioweapon have made Bacillus anthracis an interest of study. Anthrax infections are caused by the entry of B. anthracis spores into the host via the respiratory system, the gastrointestinal tract, cuts or wounds in the skin, and injection. Among these four forms, inhalational anthrax has the highest lethality rate and persistence of spores in the lungs of animals following pulmonary exposure has been noted for decades. However, details or mechanisms of spore persistence were not known. In this study, we investigated spore persistence in a mouse model. The results suggest that B. anthracis spores have special properties that promote persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence. Moreover, recent discoveries from our laboratory suggest that spores evolved a sophisticated mechanism to interact with the host complement system. The complement system is a crucial part of the host defense mechanism against foreign microorganisms. Knowledge of the specific interactions that occur between the complement system and B. anthracis was limited. Studies performed in our laboratory have suggested that spores of B. anthracis can target specific proteins, such as Factor H (fH) of the complement system. Spores of B. anthracis are enclosed by an exosporium, which consists of a basal layer surrounded by a nap of hair-like filaments. The major structural component of the filaments is called Bacillus collagen-like protein of anthracis (BclA), which comprises a central collagen-like region and a globular C-terminal domain. BclA is the first point of contact with the innate system of an infected host. In this study, we investigated the molecular details of BclA-fH interaction with respect to the specific binding mechanism and the functional significance of this interaction in a murine model of anthrax infection. We hypothesized that the recruitment of fH to the spore surface by BclA limits the extent of complement activation and promotes pathogen survival and persistence in the infected host. Findings from this study are significant to understanding how to treat post-exposure prophylaxis and improve our knowledge of spores with the host immune system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTERACTION BETWEEN BRK AND HER2 IN BREAST CANCER Midan Ai, Ph.D. Supervisory Professor: Zhen Fan, M.D. Breast tumor kinase (Brk) is a nonreceptor protein-tyrosine kinase that is highly expressed in approximately two thirds of breast cancers but is not detectable or is expressed at very low levels in normal mammary epithelium. Brk plays important roles in promoting proliferation, survival, invasion, and metastasis of breast cancer cells, but the mechanism(s) of which remain largely unknown. Recent studies showed that Brk is frequently co-overexpressed with human epidermal growth factor receptor-2 (HER2) and is physically associated with HER2 in breast cancer. The mechanism needs to be determined. In my studies, I found that high expression of HER2 is correlated with high expression of Brk in breast cancer cell lines. Silencing HER2 expression via RNA interference in HER2 over-expressed breast cancer cells resulted in Brk protein decrease and overexpression of HER2 in HER2 low-expressed breast cancer cells up-regulated Brk expression. The mechanism study indicated that overexpression of HER2 increased Brk protein stability. Brk was degraded through a Ca2+-dependent protease pathway involving calpain and HER2 stimulated Brk expression via inhibiting calpain activity. Calpastatin is a calpain endogenous inhibitor and the calpain-calpastatin system has been implicated in a number of cell physiological functions. HER2 restrained calpain activation via up-regulating calpastatin expression and HER2 downstream signaling, MAPK pathway, was involved in the regulation. Furthermore, silencing of Brk expression by RNA interference in HER2-overexpressing breast cancer cells decreased HER2-mediated cell proliferation, survival, invasion/metastasis potential and increased cell sensitivity to HER2 kinase inhibitor, lapatinib, treatment, indicating that Brk plays important roles in regulating and mediating the oncogenic functions of HER2. The Stat3 pathway played important roles in Brk mediated cell survival and invasion/metastasis in the context of HER2-overexpressing breast cancer cells. However, transgenic mice with inducible expression of constitutively active Brk (CA) in the mammary epithelium failed to develop malignant change in the mammary glands after Brk induction for 15 months which indicated that expression of Brk protein alone was not sufficiently to induce spontaneous breast tumor. Bitransgenic mice with co-expression of HER2/neu and inducible expression of Brk in the mammary epithelium developed multifocal mammary tumors, but there were no significant difference in the tumor occurring time, tumor size, tumor weight and tumor multiplicity between the mouse group with co-expression of Brk and HER2/neu and the mouse group with HER2/neu expression only.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the population of the world aging, the prominence of diseases such as Type II Diabetes (T2D) and Alzheimer’s disease (AD) are on the rise. In addition, patients with T2D have an increased risk of developing AD compared to age-matched individuals, and the number of AD patients with T2D is higher than among aged-matched non-AD patients. AD is a chronic and progressive dementia characterized by amyloid-beta (Aβ) plaques, neurofibrillary tangles (NFTs), neuronal loss, brain inflammation, and cognitive impairment. T2D involves the dysfunctional use of pancreatic insulin by the body resulting in insulin resistance, hyperglycemia, hyperinsulinemia, pancreatic beta cell (β-cell) death, and other complications. T2D and AD are considered protein misfolding disorders (PMDs). PMDs are characterized by the presence of misfolded protein aggregates, such as in T2D pancreas (islet amyloid polypeptide - IAPP) and in AD brain (amyloid– Aβ) of affected individuals. The misfolding and accumulation of these proteins follows a seeding-nucleation model where misfolded soluble oligomers act as nuclei to propagate misfolding by recruiting other native proteins. Cross-seeding occurs when oligomers composed by one protein seed the aggregation of a different protein. Our hypothesis is that the pathological interactions between T2D and AD may in part occur through cross-seeding of protein misfolding. To test this hypothesis, we examined how each respective aggregate (Aβ or IAPP) affects the disparate disease pathology through in vitro and in vivo studies. Assaying Aβ aggregates influence on T2D pathology, IAPP+/+/APPSwe+/- double transgenic (DTg) mice exhibited exacerbated T2D-like pathology as seen in elevated hyperglycemia compared to controls; in addition, IAPP levels in the pancreas are highest compared to controls. Moreover, IAPP+/+/APPSwe+/- animals demonstrate abundant plaque formation and greater plaque density in cortical and hippocampal areas in comparison to controls. Indeed, IAPP+/+/APPSwe+/- exhibit a colocalization of both misfolded proteins in cerebral plaques suggesting IAPP may directly interact with Aβ and aggravate AD pathology. In conclusion, these studies suggest that cross-seeding between IAPP and Aβ may occur, and that these protein aggregates exacerbate and accelerate disease pathology, respectively. Further mechanistic studies are necessary to determine how these two proteins interact and aggravate both pancreatic and brain pathologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many eukaryotic promoters contain a CCAAT element at a site close ($-$80 to $-$120) to the transcription initiation site. CBF (CCAAT Binding Factor), also called NF-Y and CP1, was initially identified as a transcription factor binding to such sites in the promoters of the Type I collagen, albumin and MHC class II genes. CBF is a heteromeric transcription factor and purification and cloning of two of the subunits, CBF-A and CBF-B revealed that it was evolutionarily conserved with striking sequence identities with the yeast polypeptides HAP3 and HAP2, which are components of a CCAAT binding factor in yeast. Recombinant CBF-A and CBF-B however failed to bind to DNA containing CCAAT sequences. Biochemical experiments led to the identification of a third subunit, CBF-C which co-purified with CBF-A and complemented the DNA binding of recombinant CBF-A and CBF-B. We have recently isolated CBF-C cDNAs and have shown that bacterially expressed purified CBF-C binds to CCAAT containing DNA in the presence of recombinant CBF-A and CBF-B. Our experiments also show that a single molecule each of all the three subunits are present in the protein-DNA complex. Interestingly, CBF-C is also evolutionarily conserved and the conserved domain between CBF-C and its yeast homolog HAP5 is sufficient for CBF-C activity. Using GST-pulldown experiments we have demonstrated the existence of protein-protein interaction between CBF-A and CBF-C in the absence of CBF-B and DNA. CBF-B on other hand, requires both CBF-A and CBF-C to form a ternary complex which then binds to DNA. Mutational studies of CBF-A have revealed different domains of the protein which are involved in CBF-C interaction and CBF-B interaction. In addition, CBF-A harbors a domain which is involved in DNA recognition along with CBF-B. Dominant negative analogs of CBF-A have also substantiated our initial observation of assembly of CBF subunits. Our studies define a novel DNA binding structure of heterotrimeric CBF, where the three subunits of CBF follow a particular pathway of assembly of subunits that leads to CBF binding to DNA and activating transcription. ^