18 resultados para importance analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Few recent estimates of childhood asthma incidence exist in the literature, although the importance of incidence surveillance for understanding asthma risk factors has been recognized. Asthma prevalence, morbidity and mortality reports have repeatedly shown that low-income children are disproportionately impacted by the disease. The aim of this study was to demonstrate the utility of Medicaid claims data for providing statewide estimates of asthma incidence. Medicaid Analytic Extract (MAX) data for Texas children ages 0-17 enrolled in Medicaid between 2004 and 2007 were used to estimate incidence overall and by age group, gender, race and county of residence. A 13+ month period of continuous enrollment was required in order to distinguish incident from prevalent cases identified in the claims data. Age-adjusted incidence of asthma was 4.26/100 person-years during 2005-2007, higher than reported in other populations. Incidence rates decreased with age, were higher for males than females, differed by race, and tended to be higher in rural than urban areas. With this study, we were able to demonstrate the utility of MAX data for estimating asthma incidence, and create a dataset of incident cases to use in further analysis. ^ In subsequent analyses, we investigated a possible association between ambient air pollutants and incident asthma among Medicaid-enrolled children in Harris County Texas between 2005 and 2007. This population is at high risk for asthma, and living in an area with historically poor air quality. We used a time-stratified case-crossover design and conditional logistic regression to calculate odds ratios, adjusted for weather variables and aeroallergens, to assess the effect of increases in ozone, NO2 and PM2.5 concentrations on risk of developing asthma. Our results show that a 10 ppb increase in ozone was significantly associated with asthma during the warm season (May-October), with the strongest effect seen when a 6-day cumulative lag period was used to compute the exposure metric (OR=1.05, 95% CI, 1.02–1.08). Similar results were seen for NO2 and PM 2.5 (OR=1.07, 95% CI, 1.03–1.11 and OR=1.12, 95% CI, 1.03–1.22, respectively). PM2.5 also had significant effects in the cold season (November-April), 5-day cumulative lag: OR=1.11, 95% CI, 1.00–1.22. When compared with children in the lowest quartile of O3 exposure, the risk for children in the highest quartile was 20% higher. This study indicates that these pollutants are associated with newly-diagnosed childhood asthma in this low-income urban population, particularly during the summer months. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Birth defects are the leading cause of infant mortality in the United States and are a major cause of lifetime disability. However, efforts to understand their causes have been hampered by a lack of population-specific data. During 1990–2004, 22 state legislatures responded to this need by proposing birth defects surveillance legislation (BDSL). The contrast between these states and those that did not pass BDSL provides an opportunity to better understand conditions associated with US public health policy diffusion. ^ This study identifies key state-specific determinants that predict: (1) the introduction of birth defects surveillance legislation (BDSL) onto states' formal legislative agenda, and (2) the successful adoption of these laws. Secondary aims were to interpret these findings in a theoretically sound framework and to incorporate evidence from three analytical approaches. ^ The study begins with a comparative case study of Texas and Oregon (states with divergent BDSL outcomes), including a review of historical documentation and content analysis of key informant interviews. After selecting and operationalizing explanatory variables suggested by the case study, Qualitative Comparative Analysis (QCA) was applied to publically available data to describe important patterns of variation among 37 states. Results from logistic regression were compared to determine whether the two methods produced consistent findings. ^ Themes emerging from the comparative case study included differing budgetary conditions and the significance of relationships within policy issue networks. However, the QCA and statistical analysis pointed to the importance of political parties and contrasting societal contexts. Notably, state policies that allow greater access to citizen-driven ballot initiatives were consistently associated with lower likelihood of introducing BDSL. ^ Methodologically, these results indicate that a case study approach, while important for eliciting valuable context-specific detail, may fail to detect the influence of overarching, systemic variables, such as party competition. However, QCA and statistical analyses were limited by a lack of existing data to operationalize policy issue networks, and thus may have downplayed the impact of personal interactions. ^ This study contributes to the field of health policy studies in three ways. First, it emphasizes the importance of collegial and consistent relationships among policy issue network members. Second, it calls attention to political party systems in predicting policy outcomes. Finally, a novel approach to interpreting state data in a theoretically significant manner (QCA) has been demonstrated.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pathway based genome wide association study evolves from pathway analysis for microarray gene expression and is under rapid development as a complementary for single-SNP based genome wide association study. However, it faces new challenges, such as the summarization of SNP statistics to pathway statistics. The current study applies the ridge regularized Kernel Sliced Inverse Regression (KSIR) to achieve dimension reduction and compared this method to the other two widely used methods, the minimal-p-value (minP) approach of assigning the best test statistics of all SNPs in each pathway as the statistics of the pathway and the principal component analysis (PCA) method of utilizing PCA to calculate the principal components of each pathway. Comparison of the three methods using simulated datasets consisting of 500 cases, 500 controls and100 SNPs demonstrated that KSIR method outperformed the other two methods in terms of causal pathway ranking and the statistical power. PCA method showed similar performance as the minP method. KSIR method also showed a better performance over the other two methods in analyzing a real dataset, the WTCCC Ulcerative Colitis dataset consisting of 1762 cases, 3773 controls as the discovery cohort and 591 cases, 1639 controls as the replication cohort. Several immune and non-immune pathways relevant to ulcerative colitis were identified by these methods. Results from the current study provided a reference for further methodology development and identified novel pathways that may be of importance to the development of ulcerative colitis.^