63 resultados para gene regulatory network
Resumo:
The creation, preservation, and degeneration of cis-regulatory elements controlling developmental gene expression are fundamental genome-level evolutionary processes about which little is known. In this study, critical differences in cis-regulatory elements controlling the expression of the sea urchin aboral ectoderm-specific spec genes were identified and explored. In genomes of species within the Strongylocentrotidae family, multiple copies of a repetitive sequence element termed RSR were present, but RSRs were not detected in genomes of species outside Strongylocentrotidae. RSRs are invariably associated with spec genes, and in Strongylocentrotus purpuratus, the spec2a RSR functioned as a transcriptional enhancer displaying greater activity than RSRs from the spec1 or spec2c paralogs. Single base-pair differences at two cis-regulatory elements within the spec2a RSR greatly increased the binding affinities of four transcription factors: SpCCAAT-binding factor at one element and SpOtx, SpGoosecoid, and SpGATA-E at another. The cis-regulatory elements to which SpCCAAT-binding factor, SpOtx, SpGoosecoid, and SpGATA-E bound were recent evolutionary acquisitions that could act either to activate or repress transcription, depending on the cell type. These elements were found in the spec2a RSR ortholog in Strongylocentrotus pallidus but not in the RSR orthologs of Strongylocentrotus droebachiensis or Hemicentrotus pulcherrimus. These results indicate that spec genes exhibit a dynamic pattern of cis-regulatory element evolution while stabilizing selection preserves their aboral ectoderm expression domain. ^
Resumo:
Prostate cancer is the second leading cause of cancer-related death and the most common non-skin cancer in men in the USA. Considerable advancements in the practice of medicine have allowed a significant improvement in the diagnosis and treatment of this disease and, in recent years, both incidence and mortality rates have been slightly declining. However, it is still estimated that 1 man in 6 will be diagnosed with prostate cancer during his lifetime, and 1 man in 35 will die of the disease. In order to identify novel strategies and effective therapeutic approaches in the fight against prostate cancer, it is imperative to improve our understanding of its complex biology since many aspects of prostate cancer initiation and progression still remain elusive. The study of tumor biomarkers, due to their specific altered expression in tumor versus normal tissue, is a valid tool for elucidating key aspects of cancer biology, and may provide important insights into the molecular mechanisms underlining the tumorigenesis process of prostate cancer. PCA3, is considered the most specific prostate cancer biomarker, however its biological role, until now, remained unknown. PCA3 is a long non-coding RNA (ncRNA) expressed from chromosome 9q21 and its study led us to the discovery of a novel human gene, PC-TSGC, transcribed from the opposite strand and in an antisense orientation to PCA3. With the work presented in this thesis, we demonstrate that PCA3 exerts a negative regulatory role over PC-TSGC, and we propose PC-TSGC to be a new tumor suppressor gene that contrasts the transformation of prostate cells by inhibiting Rho-GTPases signaling pathways. Our findings provide a biological role for PCA3 in prostate cancer and suggest a new mechanism of tumor suppressor gene inactivation mediated by non-coding RNA. Also, the characterization of PCA3 and PC-TSGC led us to propose a new molecular pathway involving both genes in the transformation process of the prostate, thus providing a new piece of the jigsaw puzzle representing the complex biology of prostate cancer.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
Withdrawal reflexes of the mollusk Aplysia exhibit sensitization, a simple form of long-term memory (LTM). Sensitization is due, in part, to long-term facilitation (LTF) of sensorimotor neuron synapses. LTF is induced by the modulatory actions of serotonin (5-HT). Pettigrew et al. developed a computational model of the nonlinear intracellular signaling and gene network that underlies the induction of 5-HT-induced LTF. The model simulated empirical observations that repeated applications of 5-HT induce persistent activation of protein kinase A (PKA) and that this persistent activation requires a suprathreshold exposure of 5-HT. This study extends the analysis of the Pettigrew model by applying bifurcation analysis, singularity theory, and numerical simulation. Using singularity theory, classification diagrams of parameter space were constructed, identifying regions with qualitatively different steady-state behaviors. The graphical representation of these regions illustrates the robustness of these regions to changes in model parameters. Because persistent protein kinase A (PKA) activity correlates with Aplysia LTM, the analysis focuses on a positive feedback loop in the model that tends to maintain PKA activity. In this loop, PKA phosphorylates a transcription factor (TF-1), thereby increasing the expression of an ubiquitin hydrolase (Ap-Uch). Ap-Uch then acts to increase PKA activity, closing the loop. This positive feedback loop manifests multiple, coexisting steady states, or multiplicity, which provides a mechanism for a bistable switch in PKA activity. After the removal of 5-HT, the PKA activity either returns to its basal level (reversible switch) or remains at a high level (irreversible switch). Such an irreversible switch might be a mechanism that contributes to the persistence of LTM. The classification diagrams also identify parameters and processes that might be manipulated, perhaps pharmacologically, to enhance the induction of memory. Rational drug design, to affect complex processes such as memory formation, can benefit from this type of analysis.
Resumo:
Addback of donor T cells following T cell-depleted stem cell transplantation (SCT) can accelerate immune reconstitution and be effective against relapsed malignancy. After haploidentical SCT, a high risk of graft-versus-host disease (GVHD) essentially precludes this option, unless the T cells are first depleted of alloreactive precursor cells. Even then, the risks of severe GVHD remain significant. To increase the safety of the approach and thereby permit administration of larger T cell doses, we used a suicide gene, inducible caspase 9 (iCasp9), to transduce allodepleted T cells, permitting their destruction should administration have adverse effects. We made a retroviral vector encoding iCasp9 and a selectable marker (truncated CD19). Even after allodepletion (using anti-CD25 immunotoxin), donor T cells could be efficiently transduced, expanded, and subsequently enriched by CD19 immunomagnetic selection to >90% purity. These engineered cells retained antiviral specificity and functionality, and contained a subset with regulatory phenotype and function. Activating iCasp9 with a small-molecule dimerizer rapidly produced >90% apoptosis. Although transgene expression was downregulated in quiescent T cells, iCasp9 remained an efficient suicide gene, as expression was rapidly upregulated in activated (alloreactive) T cells. We have demonstrated the clinical feasibility of this approach after haploidentical transplantation by scaling up production using clinical grade materials.
Resumo:
High-throughput assays, such as yeast two-hybrid system, have generated a huge amount of protein-protein interaction (PPI) data in the past decade. This tremendously increases the need for developing reliable methods to systematically and automatically suggest protein functions and relationships between them. With the available PPI data, it is now possible to study the functions and relationships in the context of a large-scale network. To data, several network-based schemes have been provided to effectively annotate protein functions on a large scale. However, due to those inherent noises in high-throughput data generation, new methods and algorithms should be developed to increase the reliability of functional annotations. Previous work in a yeast PPI network (Samanta and Liang, 2003) has shown that the local connection topology, particularly for two proteins sharing an unusually large number of neighbors, can predict functional associations between proteins, and hence suggest their functions. One advantage of the work is that their algorithm is not sensitive to noises (false positives) in high-throughput PPI data. In this study, we improved their prediction scheme by developing a new algorithm and new methods which we applied on a human PPI network to make a genome-wide functional inference. We used the new algorithm to measure and reduce the influence of hub proteins on detecting functionally associated proteins. We used the annotations of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) as independent and unbiased benchmarks to evaluate our algorithms and methods within the human PPI network. We showed that, compared with the previous work from Samanta and Liang, our algorithm and methods developed in this study improved the overall quality of functional inferences for human proteins. By applying the algorithms to the human PPI network, we obtained 4,233 significant functional associations among 1,754 proteins. Further comparisons of their KEGG and GO annotations allowed us to assign 466 KEGG pathway annotations to 274 proteins and 123 GO annotations to 114 proteins with estimated false discovery rates of <21% for KEGG and <30% for GO. We clustered 1,729 proteins by their functional associations and made pathway analysis to identify several subclusters that are highly enriched in certain signaling pathways. Particularly, we performed a detailed analysis on a subcluster enriched in the transforming growth factor β signaling pathway (P<10-50) which is important in cell proliferation and tumorigenesis. Analysis of another four subclusters also suggested potential new players in six signaling pathways worthy of further experimental investigations. Our study gives clear insight into the common neighbor-based prediction scheme and provides a reliable method for large-scale functional annotations in this post-genomic era.
Resumo:
Enterococcus faecalis is a Gram-positive bacterium that lives as a commensal organism in the mammalian gastrointestinal tract, but can behave as an opportunistic pathogen. Our lab discovered that mutation of the eutK gene attenuates virulence of E. faecalis in the C. elegans model host. eutK is part of the ethanolamine metabolic pathway which was previously unknown in E. faecalis. I discovered the presence of two unique posttranscriptional regulatory features that control expression of eut locus genes. The first feature I found is an AdoCBL riboswitch, a cis-acting RNA regulatory element that acts as a positive regulator of gene expression. The second feature I discovered is a unique two-component system, EutVW. The EutV response regulator contains an ANTAR family domain, which binds RNA to trigger transcriptional antitermination. I determined that induction of expression of several genes in the eut locus is dependent on ethanolamine, AdoCBL and the two-component system. AdoCBL and ethanolamine are both required for induction of eut locus gene expression. Additionally, I discovered eutG is regulated by a unique mechanism of antitermination. Both the AdoCBL riboswitch and EutV response regulator control the expression of the downstream gene eutG. EutV potentially acts through a novel antitermination mechanism in which a dimer of EutV binds to a pair of mRNA stem loops forming an antitermination complex. My data show a unique mechanism by which two environmental signals are integrated by two different posttranscriptional regulators to regulate a single locus.
Resumo:
The H(+)-K(+)-ATPase alpha(2) (HKalpha2) gene of the renal collecting duct and distal colon plays a central role in potassium and acid-base homeostasis, yet its transcriptional control remains poorly characterized. We previously demonstrated that the proximal 177 bp of its 5'-flanking region confers basal transcriptional activity in murine inner medullary collecting duct (mIMCD3) cells and that NF-kappaB and CREB-1 bind this region to alter transcription. In the present study, we sought to determine whether the -144/-135 Sp element influences basal HKalpha2 gene transcription in these cells. Electrophoretic mobility shift and supershift assays using probes for -154/-127 revealed Sp1-containing DNA-protein complexes in nuclear extracts of mIMCD3 cells. Chromatin immunoprecipitation (ChIP) assays demonstrated that Sp1, but not Sp3, binds to this promoter region of the HKalpha2 gene in mIMCD3 cells in vivo. HKalpha2 minimal promoter-luciferase constructs with point mutations in the -144/-135 Sp element exhibited much lower activity than the wild-type promoter in transient transfection assays. Overexpression of Sp1, but not Sp3, trans-activated an HKalpha2 proximal promoter-luciferase construct in mIMCD3 cells as well as in SL2 insect cells, which lack Sp factors. Conversely, small interfering RNA knockdown of Sp1 inhibited endogenous HKalpha2 mRNA expression, and binding of Sp1 to chromatin associated with the proximal HKalpha2 promoter without altering the binding or regulatory influence of NF-kappaB p65 or CREB-1 on the proximal HKalpha2 promoter. We conclude that Sp1 plays an important and positive role in controlling basal HKalpha2 gene expression in mIMCD3 cells in vivo and in vitro.
Resumo:
cAMP-response element binding (CREB) proteins are involved in transcriptional regulation in a number of cellular processes (e.g., neural plasticity and circadian rhythms). The CREB family contains activators and repressors that may interact through positive and negative feedback loops. These loops can be generated by auto- and cross-regulation of expression of CREB proteins, via CRE elements in or near their genes. Experiments suggest that such feedback loops may operate in several systems (e.g., Aplysia and rat). To understand the functional implications of such feedback loops, which are interlocked via cross-regulation of transcription, a minimal model with a positive and negative loop was developed and investigated using bifurcation analysis. Bifurcation analysis revealed diverse nonlinear dynamics (e.g., bistability and oscillations). The stability of steady states or oscillations could be changed by time delays in the synthesis of the activator (CREB1) or the repressor (CREB2). Investigation of stochastic fluctuations due to small numbers of molecules of CREB1 and CREB2 revealed a bimodal distribution of CREB molecules in the bistability region. The robustness of the stable HIGH and LOW states of CREB expression to stochastic noise differs, and a critical number of molecules was required to sustain the HIGH state for days or longer. Increasing positive feedback or decreasing negative feedback also increased the lifetime of the HIGH state, and persistence of this state may correlate with long-term memory formation. A critical number of molecules was also required to sustain robust oscillations of CREB expression. If a steady state was near a deterministic Hopf bifurcation point, stochastic resonance could induce oscillations. This comparative analysis of deterministic and stochastic dynamics not only provides insights into the possible dynamics of CREB regulatory motifs, but also demonstrates a framework for understanding other regulatory processes with similar network architecture.
Resumo:
Human placental lactogen (hPL) and human growth hormone (hGH) comprise a multigene family that share $>$90% nucleic acid sequence homology including 500 bp of 5$\sp\prime$ flanking sequence. Despite these similarities, hGH is produced in the anterior pituitary while hPL is expressed in the placenta. For most genes studied to date, regulation of expression occurs by alterations at the level of transcriptional initiation. Nuclear proteins bind specific DNA sequences in the promoter to regulate gene expression. In this study, the hPL$\sb3$ promoter was analyzed for DNA sequences that contribute to its expression. The interaction between the hPL$\sb3$ promoter and nuclear proteins was examined using nuclear extracts from placental and non-placental cells.^ To identify regulatory elements in the promoter of the hPL$\sb3$ gene, 5$\sp\prime$ deletion mutants were constructed by cleaving 1200 bp of upstream sequence with various restriction enzymes. These DNA fragments were ligated 5$\sp\prime$ to a promoterless bacterial gene chloramphenicol acetyltransferase (CAT) and transfected into JEG-3 cells, a human placental choriocarcinoma cell line. The level of CAT activity reflects the ability of the promoter mutants to activate transcription. Deletion of the sequence between $-$142 bp and $-$129 bp, relative to the start of transcription, resulted in an 8-fold decrease in CAT activity. Nuclear proteins from JEG-3, HeLa, and HepG2 (human liver cells), formed specific binding complexes with this region of the hPL$\sb3$ promoter, as shown by gel mobility shift assay. The $-$142 bp to $-$129 bp region contains a sequence similar to that of a variant binding site for the transcription factor Sp1. Sp1-like proteins were identified by DNA binding assay, in the nuclear extracts of the three cell lines. A series of G nucleotides in the hPL$\sb3$ promoter regulatory region were identified by methylation interference assay to interact with the DNA-binding proteins and the pattern obtained is similar to that for other Sp1 binding sites that have been studied. This suggests that hPL$\sb3$ may be transcriptionally regulated by Sp1 or a Sp1-like transacting factor. ^
Resumo:
The expression of the chicken fast skeletal myosin alkali light chain (MLC) 3f is subject to complex patterns of control by developmental and physiologic signals. Regulation over MLC3f gene expression is thought to be exerted primarily at the transcriptional level. The purpose of this dissertation was to identify cis-acting elements on the 5$\sp\prime$ flanking region of chicken MLC3f gene that are important for transcriptional regulation. The results show that the 5$\sp\prime$ flanking region of MLC3f gene contains multiple cis-acting elements. The nucleotide sequence of these elements demonstrates a high degree of conservation between different species and are also found in the 5$\sp\prime$ flanking regions of many muscle protein genes. The first regulatory region is located between $-$185 and $-$150 bp from the transcription start site and contains an AT-rich element. Linker scanner analyses have revealed that this element has a positive effect on transcription of the MLC3f promoter. Furthermore, when linked to a heterologous viral promoter, it can enhance reporter gene expression in a muscle-specific manner, independent of distance or orientation.^ The second regulatory region is located between $-$96 and $-$64 from the transcription start site. Sequences downstream of $-$96 have the capacity to drive muscle-specific reporter gene expression, although the region between $-$96 and $-$64 has no intrinsic enhancer-like activity. Linker scanner analyses have identified a GC-rich motif that required efficient transcription of the MLC3f promoter. Mutations to this region of DNA results in diminished capacity to drive reporter gene expression and is correlated with disruption of the ability to bind sequence-specific transcription factors. These sequence-specific DNA-binding proteins were detected in both muscle and non-muscle extracts. The results suggest that the mere presence or absence of transcription factors cannot be solely responsible for regulation of MLC3f expression and that tissue-specific expression may arise from complex interactions with muscle-specific, as well as more ubiquitous transcription factors with multiple regulatory elements on the gene. ^
Resumo:
This investigation examined the clonal dynamics of B-cell expression and evaluated the role of idiotype network interactions in shaping the expressed secondary B-cell repertoire. Three interrelated experimental approaches were applied. The first approach was designed to distinguish between regulatory influences controlled by the major histocompatibility complex (MHC) and regulatory influences controlled by non-MHC factors including the idiotype network. This approach consisted of studies on the clonal dynamics and heterogeneity of the expressed IgG antibody repertoire of BALB/c mice. The second approach involved the analysis of the clonal dynamics of antibody responses of outbred rabbits. This analysis was coupled with studies to detect the occurrence and activity of constituents of the idiotype network. In the third approach the transfer of rabbit lymphocytes from immunized donors to MHC matched naive recipients was used to examine the effects of recipient non-MHC immunoregulatory influences on the expression of donor memory B-cells. Although many memory B cells were unaffected by non-MHC influences, these data show that non-MHC immunoregulatory influences can affect the expression of B-cells in the secondary response of inbred mice and outbred rabbits. The results also indicate that most IgG antibody responses are heterogeneous and are characterized by a stable group of dominant clonotypes. Clonal dominance and B-cell memory were found to be established early in an immune response. The expression of B memory clones appeared to be favored over the expression of virgin B cells. The injection of anti-tetanus antibody induced the antigen independent production of anti-tetanus antibody, probably through idiotypic mechanisms. These results demonstrate that both antibody and antigen can affect the expressed B-ceIl repertoire. Thus, idiotypic interactions are capable of influencing the expression of B-cells and these findings support the existence and function of an idiotype network with strong immunoregulatory potential. ^
Resumo:
Factors involved in regulating tissue specific gene expression play a major role in cell differentiation. In order to further understand the differentiation events occurring during hematopoiesis, a myeloid specific gene was characterized, the expression pattern during hematopoiesis was analyzed, and the mechanisms governing its regulation were assessed. Previously, our laboratory isolated an anonymous cDNA clone, pD-D1, which displayed preferential expression in myeloid cells. From nucleotide sequencing of overlapping cDNA clones I determined that the D-D1 message encodes a hematopoietic proteoglycan core protein (HpPG). The expression pattern of the gene was assessed by in situ hybridization of bone marrow and peripheral blood samples. The gene was shown to be expressed, at variable levels, in all leukocytes analyzed, including cells from every stage of neutrophil development. In an attempt to ascertain the differentiation time point in which the HpPG gene is initially expressed, more immature populations of leukemic myeloblasts were assessed by northern blot analysis. Though the initial point of expression was not obtained, an up-regulatory event was discovered corresponding to a time point in which granule genesis occurs. This finding is consistent with prior observations of extensive packaging of proteoglycans into the secretory granules of granule producing hematopoietic cells. The HpPG gene was also found to be expressed at low levels in all stages of lymphocyte development analyzed, suggesting that the HpPG gene is initially expressed before the decision for myeloid-lymphoid differentiation. To assess the mechanism for the up-regulatory event, a K562 in vitro megakaryocytic differentiation system was used. Nuclear run-off analyses in this system demonstrated the up-regulation to be under transcriptional control. In addition, the HpPG gene was found to be down regulated during macrophage differentiation of HL60 cells and was also shown to be transcriptionally controlled. These results indicate that there are multiple points of transcriptional regulation of the HpPG gene during differentiation. Furthermore, the factors regulating the gene at these time points are likely to play an important role in the differentiation of granule producing cells and macrophages. ^
Resumo:
Histone gene expression is replication-independent during oogenesis and early embryogenesis in amphibians; however, it becomes replication-dependent during later embryogenesis and remains replication-dependent through adulthood. In order to understand the mechanism for this switch in transcriptional regulation of histone gene expression during amphibian development, linker-scanning mutations were made in a Xenopus laevis H2B histone gene promoter by oligonucleotide site-directed mutagenesis and assayed by microinjection into oocytes and embryos. The Xenopus H2B gene has a relatively simple promoter containing several transcriptional regulatory elements, including TFIID, CCAAT, and ATF motifs, required for maximal transcription in both oocytes and embryos. Factors binding to the CCAAT and ATF motifs are present in oocytes and embryos and increase slightly in abundance during early development. A sequence (CTTTACAT) in the frog H2B promoter resembling the conserved octamer motif (ATTTGCAT), the target for cell-cycle regulation of a human H2B gene, is additionally required for maximal H2B transcription in frog embryos. Oocytes and embryos contain multiple octamer-binding proteins that are expressed in a sequential manner during early development. Sequences encoding three novel octamer-binding proteins were isolated from Xenopus cDNA libraries by virtue of their similarity with the DNA binding (POU) domain of the ubiquitously expressed transcription factor Oct-1. The protein encoded by one of these genes, termed Oct-60, was localized mainly in the cytoplasm of oocytes and was also present in early embryos until the gastrula stage of development. Proteins encoded by the other two genes, Oct-25 and Oct-91, were present in embryos after the mid-blastula stage of development and decreased by early neurula stage. The activity of the Xenopus H2B octamer motif in embryos is not specifically associated with increased binding by Oct-1 or the appearance of novel octamer-binding proteins but requires the presence of an intact CCAAT motif. We found that synergistic interactions among promoter elements are important for full H2B promoter activity. The results suggest that transcription of the Xenopus H2B gene is replication-dependent when it is activated at the mid-blastula stage of development and that replication-dependent H2B transcription is mediated by Oct-1. ^
Resumo:
Genetic evidence has indicated that the segmentation gene runt plays a key role in regulating gene expression of the pair-rule genes hairy, even-skipped, and fushi tarazu. In contrast to other pair-rule genes, sequence data of the runt open reading frame did not reveal homologies to DNA-binding motifs of known transcriptional regulatory proteins. This thesis project examined several properties of the runt gene based on the sequence of the transcription unit, including the subcellular localization of the protein in vivo, its ability to bind DNA, and the functionality of a putative nucleotide binding domain.^ A runt-specific antibody was generated and used to demonstrate that runt is localized in the nucleus. Since the precise overlap of the pair-rule stripes is thought to be critical for the determination of cellular identity along the anterior-posterior axis, phasing of early runt expression in the blastoderm was examined with regard to the segmentation genes hairy, even-skipped, and fushi tarazu. runt was also expressed at later stages of embryogenesis, including expression in neuroblasts, and ganglion mother cells of the developing nervous system. Expression at this stage was required for the subsequent formation of specific neurons and runt was extensively expressed in the central and peripheral nervous systems.^ Several experiments were done to address the biochemical function of the runt protein. A direct interaction of runt with DNA was first examined. Although bacterial expressed runt was found to bind dsDNA-cellulose, subsequent experiments failed to detect sequence-specific interactions with DNA. Inter-species conservation of the putative nucleotide binding domain suggested that this region was functionally important, and runt protein bound a labeled ATP analog with high affinity in vitro. Finally, the effect of substitution of a critical residue of the nucleotide binding domain on runt activity was examined in vivo. Ectopic expression of the mutant protein indicated that this conserved substitution altered, but did not eliminate, runt activity as evaluated by segmentation phenotype and viability. ^