23 resultados para diagnostic and prognostic algorithms developmen
Resumo:
Identifying and characterizing the genes responsible for inherited human diseases will ultimately lead to a more holistic understanding of disease pathogenesis, catalyze new diagnostic and treatment modalities, and provide insights into basic biological processes. This dissertation presents research aimed at delineating the genetic and molecular basis of human diseases through epigenetic and functional studies and can be divided into two independent areas of research. The first area of research describes the development of two high-throughput melting curve based methods to assay DNA methylation, referred to as McMSP and McCOBRA. The goal of this project was to develop DNA methylation methods that can be used to rapidly determine the DNA methylation status at a specific locus in a large number of samples. McMSP and McCOBRA provide several advantages over existing methods, as they are simple, accurate, robust, and high-throughput making them applicable to large-scale DNA methylation studies. McMSP and McCOBRA were then used in an epigenetic study of the complex disease Ankylosing spondylitis (AS). Specifically, I tested the hypothesis that aberrant patterns of DNA methylation in five AS candidate genes contribute to disease susceptibility. While no statistically significant methylation differences were observed between cases and controls, this is the first study to investigate the hypothesis that epigenetic variation contributes to AS susceptibility and therefore provides the conceptual framework for future studies. ^ In the second area of research, I performed experiments to better delimit the function of aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1), which when mutated causes various forms of inherited blindness such as Leber congenital amaurosis. A yeast two-hybrid screen was performed to identify putative AIPL1-interacting proteins. After screening 2 × 106 bovine retinal cDNA library clones, 6 unique putative AIPL1-interacting proteins were identified. While these 6 AIPL1 protein-protein interactions must be confirmed, their identification is an important step in understanding the functional role of AIPL1 within the retina and will provide insight into the molecular mechanisms underlying inherited blindness. ^
Resumo:
Racial/ethnic disparities in diabetes mellitus (DM) and hypertension (HTN) have been observed and explained by socioeconomic status (education level, income level, etc.), screening, early diagnosis, treatment, prognostic factors, and adherence to treatment regimens. To the author's knowledge, there are no studies addressing disparities in hypertension and diabetes mellitus utilizing Hispanics as the reference racial/ethnic group and adjusting for sociodemographics and prognostic factors. This present study examined racial/ethnic disparities in HTN and DM and assessed whether this disparity is explained by sociodemographics. To assess these associations, the study utilized a cross-sectional design and examined the distribution of the covariates for racial/ethnic group differences, using the Pearson Chi Square statistic. The study focused on Non-Hispanic Blacks since this ethnic group is associated with the worst health outcomes. Logistic regression was used to estimate the prevalence odds ratio (POR) and to adjust for the confounding effects of the covariates. Results indicated that except for insurance coverage, there were statistically significant differences between Non-Hispanic Blacks and Non-Hispanic Whites, as well as Hispanics with respect to study covariates. In the unadjusted logistic regression model, there was a statistically significant increased prevalence of hypertension among Non-Hispanic Blacks compared to Hispanics, POR 1.36, 95% CI 1.02-1.80. Low income was statistically significantly associated with increased prevalence of hypertension, POR 0.38, 95% CI 0.32-0.46. Insurance coverage, though not statistically significant, was associated with an increase in the prevalence of hypertension, p>0.05. Concerning DM, Non-Hispanic Blacks were more likely to be diabetic, POR 1.10, 95% CI 0.85-1.47. High income was statistically significantly associated with decreased prevalence of DM, POR 0.47, 95% CI 0.39-0.57. After adjustment for the relevant covariates, the racial disparities between Hispanics and Non-Hispanic Blacks in HTN was removed, adjusted prevalence odds (APOR) 1.21, 95% CI 0.88-1.67. In this sample, there was racial/ethnic disparity in hypertension but not in diabetes mellitus between Hispanics and Non-Hispanic Blacks, with disparities in hypertension associated with socioeconomic status (family income, education, marital status) and also by alcohol, physical activity and age. However, race, education and BMI as class variables were statistically significantly associated with hypertension and diabetes mellitus p<0.0001. ^
Resumo:
Critically ill and injured patients require pain relief and sedation to reduce the body's stress response and to facilitate painful diagnostic and therapeutic procedures. Presently, the level of sedation and analgesia is guided by the use of clinical scores which can be unreliable. There is therefore, a need for an objective measure of sedation and analgesia. The Bispectral Index (BIS) and Patient State Index (PSI) were recently introduced into clinical practice as objective measures of the depth of analgesia and sedation. ^ Aim. To compare the different measures of sedation and analgesia (BIS and PSI) to the standard and commonly used modified Ramsay Score (MRS) and determine if the monitors can be used interchangeably. ^ Methods. MRS, BIS and PSI values were obtained in 50 postoperative cardiac surgery patients requiring analgesia and sedation from June to December 2004. The MRS, BIS and PSI values were assessed hourly for up to 6-h by a single observer. ^ The relationship between BIS and PSI values were explored using scatter plots and correlation between MRS, BIS and PSI was determined using Spearman's correlation coefficient. Intra-class correlation (ICC) was used to determine the inter-rater reliability of MRS, BIS and PSI. Kappa statistics was used to further evaluate the agreement between BIS and PSI at light, moderate and deep levels of sedation. ^ Results. There was a positive correlation between BIS and PSI values (Rho = 0.731, p<0.001). Intra-class correlation between BIS and PSI was 0.58, MRS and BIS 0.43 and MRS and PSI 0.27. Using Kappa statistics, agreement between MRS and BIS was 0.35 (95% CI: 0.27–0.43) and for MRS and PSI was 0.21 (95% CI: 0.15–0.28). The kappa statistic for BIS and PSI was 0.45 (95% CI: 0.37–0.52). Receiver operating characteristics (ROC) curves constructed to detect undersedation indicated an area under the curve (AUC) of 0.91 (95% CI = 0.87 to 0.94) for the BIS and 0.84 (95% CI = 0.79 to 0.88) for the PSI. For detection of oversedation, AUC for the BIS was 0.89 (95% CI = 0.84 to 0.92) and 0.80 (95% CI = 0.75 to 0.85) for the PSI. ^ Conclusions. There is a statistically significant positive correlation between the BIS and PSI but poor correlation and poor test agreement between the MRS and BIS as well as MRS and PSI. Both the BIS and PSI demonstrated a high level of prediction for undersedation and oversedation; however, the BIS and PSI can not be considered interchangeable monitors of sedation. ^
Resumo:
This dissertation develops and tests a comparative effectiveness methodology utilizing a novel approach to the application of Data Envelopment Analysis (DEA) in health studies. The concept of performance tiers (PerT) is introduced as terminology to express a relative risk class for individuals within a peer group and the PerT calculation is implemented with operations research (DEA) and spatial algorithms. The analysis results in the discrimination of the individual data observations into a relative risk classification by the DEA-PerT methodology. The performance of two distance measures, kNN (k-nearest neighbor) and Mahalanobis, was subsequently tested to classify new entrants into the appropriate tier. The methods were applied to subject data for the 14 year old cohort in the Project HeartBeat! study.^ The concepts presented herein represent a paradigm shift in the potential for public health applications to identify and respond to individual health status. The resultant classification scheme provides descriptive, and potentially prescriptive, guidance to assess and implement treatments and strategies to improve the delivery and performance of health systems. ^
Resumo:
High Angular Resolution Diffusion Imaging (HARDI) techniques, including Diffusion Spectrum Imaging (DSI), have been proposed to resolve crossing and other complex fiber architecture in the human brain white matter. In these methods, directional information of diffusion is inferred from the peaks in the orientation distribution function (ODF). Extensive studies using histology on macaque brain, cat cerebellum, rat hippocampus and optic tracts, and bovine tongue are qualitatively in agreement with the DSI-derived ODFs and tractography. However, there are only two studies in the literature which validated the DSI results using physical phantoms and both these studies were not performed on a clinical MRI scanner. Also, the limited studies which optimized DSI in a clinical setting, did not involve a comparison against physical phantoms. Finally, there is lack of consensus on the necessary pre- and post-processing steps in DSI; and ground truth diffusion fiber phantoms are not yet standardized. Therefore, the aims of this dissertation were to design and construct novel diffusion phantoms, employ post-processing techniques in order to systematically validate and optimize (DSI)-derived fiber ODFs in the crossing regions on a clinical 3T MR scanner, and develop user-friendly software for DSI data reconstruction and analysis. Phantoms with a fixed crossing fiber configuration of two crossing fibers at 90° and 45° respectively along with a phantom with three crossing fibers at 60°, using novel hollow plastic capillaries and novel placeholders, were constructed. T2-weighted MRI results on these phantoms demonstrated high SNR, homogeneous signal, and absence of air bubbles. Also, a technique to deconvolve the response function of an individual peak from the overall ODF was implemented, in addition to other DSI post-processing steps. This technique greatly improved the angular resolution of the otherwise unresolvable peaks in a crossing fiber ODF. The effects of DSI acquisition parameters and SNR on the resultant angular accuracy of DSI on the clinical scanner were studied and quantified using the developed phantoms. With a high angular direction sampling and reasonable levels of SNR, quantification of a crossing region in the 90°, 45° and 60° phantoms resulted in a successful detection of angular information with mean ± SD of 86.93°±2.65°, 44.61°±1.6° and 60.03°±2.21° respectively, while simultaneously enhancing the ODFs in regions containing single fibers. For the applicability of these validated methodologies in DSI, improvement in ODFs and fiber tracking from known crossing fiber regions in normal human subjects were demonstrated; and an in-house software package in MATLAB which streamlines the data reconstruction and post-processing for DSI, with easy to use graphical user interface was developed. In conclusion, the phantoms developed in this dissertation offer a means of providing ground truth for validation of reconstruction and tractography algorithms of various diffusion models (including DSI). Also, the deconvolution methodology (when applied as an additional DSI post-processing step) significantly improved the angular accuracy of the ODFs obtained from DSI, and should be applicable to ODFs obtained from the other high angular resolution diffusion imaging techniques.
Resumo:
The purpose of this study was to design, synthesize and develop novel transporter targeting agents for image-guided therapy and drug delivery. Two novel agents, N4-guanine (N4amG) and glycopeptide (GP) were synthesized for tumor cell proliferation assessment and cancer theranostic platform, respectively. N4amG and GP were synthesized and radiolabeled with 99mTc and 68Ga. The chemical and radiochemical purities as well as radiochemical stabilities of radiolabeled N4amG and GP were tested. In vitro stability assessment showed both 99mTc-N4amG and 99mTc-GP were stable up to 6 hours, whereas 68Ga-GP was stable up to 2 hours. Cell culture studies confirmed radiolabeled N4amG and GP could penetrate the cell membrane through nucleoside transporters and amino acid transporters, respectively. Up to 40% of intracellular 99mTc-N4amG and 99mTc-GP was found within cell nucleus following 2 hours of incubation. Flow cytometry analysis revealed 99mTc-N4amG was a cell cycle S phase-specific agent. There was a significant difference of the uptake of 99mTc-GP between pre- and post- paclitaxel-treated cells, which suggests that 99mTc-GP may be useful in chemotherapy treatment monitoring. Moreover, radiolabeled N4amG and GP were tested in vivo using tumor-bearing animal models. 99mTc-N4amG showed an increase in tumor-to-muscle count density ratios up to 5 at 4 hour imaging. Both 99mTc-labeled agents showed decreased tumor uptake after paclitaxel treatment. Immunohistochemistry analysis demonstrated that the uptake of 99mTc-N4amG was correlated with Ki-67 expression. Both 99mTc-N4amG and 99mTc-GP could differentiate between tumor and inflammation in animal studies. Furthermore, 68Ga-GP was compared to 18F-FDG in rabbit PET imaging studies. 68Ga-GP had lower tumor standardized uptake values (SUV), but similar uptake dynamics, and different biodistribution compared with 18F-FDG. Finally, to demonstrate that GP can be a potential drug carrier for cancer theranostics, several drugs, including doxorubicin, were selected to be conjugated to GP. Imaging studies demonstrated that tumor uptake of GP-drug conjugates was increased as a function of time. GP-doxorubicin (GP-DOX) showed a slow-release pattern in in vitro cytotoxicity assay and exhibited anti-cancer efficacy with reduced toxicity in in vivo tumor growth delay study. In conclusion, both N4amG and GP are transporter-based targeting agents. Radiolabeled N4amG can be used for tumor cell proliferation assessment. GP is a potential agent for image-guided therapy and drug delivery.
Resumo:
Existing data, collected from 1st-year students enrolled in a major Health Science Community College in the south central United States, for Fall 2010, Spring 2011, Fall 2011 and Spring 2012 semesters as part of the "Online Navigational Assessment Vehicle, Intervention Guidance, and Targeting of Risks (NAVIGATOR) for Undergraduate Minority Student Success" with CPHS approval number HSC-GEN-07-0158, was used for this thesis. The Personal Background and Preparation Survey (PBPS) and a two-question risk self-assessment subscale were administered to students during their 1st-year orientation. The PBPS total risk score, risk self-assessment total and overall scores, and Under Representative Minority Student (URMS) status were recorded. The purpose of this study is to evaluate and report the predictive validity of the indicators identified above for Adverse Academic Status Events (AASE) and Nonadvancement Adverse Academic Status Events (NAASE) as well as the effectiveness of interventions targeted using the PBPS among a diverse population of health science community college students. The predictive validity of the PBPS for AASE has previously been demonstrated among health science professions and graduate students (Johnson, Johnson, Kim, & McKee, 2009a; Johnson, Johnson, McKee, & Kim, 2009b). Data will be analyzed using binary logistic regression and correlation using SPSS 19 statistical package. Independent variables will include baseline- versus intervention-year treatments, PBPS, risk self-assessment, and URMS status. The dependent variables will be binary AASE and NAASE status. ^ The PBPS was the first reliable diagnostic and prescriptive instrument to establish documented predictive validity for student Adverse Academic Status Events (AASE) among students attending health science professional schools. These results extend the documented validity for the PBPS in predicting AASE to a health science community college student population. Results further demonstrated that interventions introduced using the PBPS were followed by approximately one-third reduction in the odds of Nonadvancement Adverse Academic Status Events (NAASE), controlling for URMS status and risk self-assessment scores. These results indicate interventions introduced using the PBPS may have potential to reduce AASE or attrition among URMS and nonURMS attending health science community colleges on a broader scale; positively impacting costs, shortages, and diversity of health science professionals.^
Resumo:
Cryoablation for small renal tumors has demonstrated sufficient clinical efficacy over the past decade as a non-surgical nephron-sparing approach for treating renal masses for patients who are not surgical candidates. Minimally invasive percutaneous cryoablations have been performed with image guidance from CT, ultrasound, and MRI. During the MRI-guided cryoablation procedure, the interventional radiologist visually compares the iceball size on monitoring images with respect to the original tumor on separate planning images. The comparisons made during the monitoring step are time consuming, inefficient and sometimes lack the precision needed for decision making, requiring the radiologist to make further changes later in the procedure. This study sought to mitigate uncertainty in these visual comparisons by quantifying tissue response to cryoablation and providing visualization of the response during the procedure. Based on retrospective analysis of MR-guided cryoablation patient data, registration and segmentation algorithms were investigated and implemented for periprocedural visualization to deliver iceball position/size with respect to planning images registered within 3.3mm with at least 70% overlap and a quantitative logit model was developed to relate perfusion deficit in renal parenchyma visualized in verification images as a result of iceball size visualized in monitoring images. Through retrospective study of 20 patient cases, the relationship between likelihood of perfusion loss in renal parenchyma and distance within iceball was quantified and iteratively fit to a logit curve. Using the parameters from the logit fit, the margin for 95% perfusion loss likelihood was found to be 4.28 mm within the iceball. The observed margin corresponds well with the clinically accepted margin of 3-5mm within the iceball. In order to display the iceball position and perfusion loss likelihood to the radiologist, algorithms were implemented to create a fast segmentation and registration module which executed in under 2 minutes, within the clinically-relevant 3 minute monitoring period. Using 16 patient cases, the average Hausdorff distance was reduced from 10.1mm to 3.21 mm with average DSC increased from 46.6% to 82.6% before and after registration.