17 resultados para blood response
Resumo:
Objective: The study aimed to identify the risk factors involved in initiating thromboembolism (TE) in pancreatic cancer (PC) patients, with focus on ABO blood type. ^ Methods and Patients: There were 35.7% confirmed cases of TE and 64.3% cases remained free of TE (n=687). There were 12.7% only Pulmonary embolism (PE), 9% only Deep vein thrombosis (DVT), 53.5% only other sites, 3.3% combined PE and DVT, 8.6% combined PE and other sites, 9.8% combined DVT and other sites, and 3.3% all three combined cases. ^ Results: The risk factors for thrombosis identified by multivariate logistic regression were: history of previous anti-thrombotic treatment, tumor site in pancreatic body or tail, large tumor size, maximum glucose category more than 126 and 200 mg/dL. ^ The factors with worse overall survival by multivariate Cox regression and Kaplan Meier analyses were: locally advanced or metastatic stage, worsening performance status, high CA 19-9 levels, and HbA1C levels more than 6 %, at diagnosis. ^ There were 29.1% and 39.1% of the patients with thrombosis in the O and non-O blood type groups respectively. Both Non-O blood type (P=0.02) and the A, B and AB blood types (P= 0.007) were associated with thrombosis as compared to O type. The odds of thrombosis were nearly half in O blood type patients as compared to non-O blood type [OR-0.54 (95% C.I.- 0.37-0.79), P<0.001]. ^ Conclusion: A better understanding of the TE and PC relationship and involved risk factors may provide insights on tumor biology and patient response to prophylactic anticoagulation therapy.^
Resumo:
Human peripheral blood monocytes (HPBM) were isolated by centrifugal elutriation from mononuclear cell enriched fractions after routine plateletapheresis and the relationship between maturation of HPBM to macrophage-like cells and activation for tumoricidal activity determined. HPBM were cultured for various times in RPMI 1640 supplemented with 5% pooled human AB serum and cytotoxicity to $\sp{125}$IUDR labeled A375M, a human melanoma cell line, and TNF-$\alpha$ release determined by cytolysis of actinomycin D treated L929 cells. Freshly isolated HPBM or those exposed to recombinant IFN-$\gamma$(1.0 U/ml) were not cytolytic and did not release TNF-$\alpha$ into culture supernatants. Exposure to bacterial lipopolysaccharide (LPS, 1.0 $\upsilon$g/ml) stimulated cytolytic activity and release of TNF-$\alpha$. Maximal release of TNF-$\alpha$ protein occurred at 8 hrs and returned to baseline by 72 hrs. Expression of TNF-$\alpha$ protein was determined by Western blotting. Neither freshly isolated nor IFN-$\gamma$ treated HPBM expressed TNF protein at any time during in vitro culture. LPS treated HPBM maximally expressed the 17KD TNF-$\alpha$ protein at 8 hrs, and protein was not detected after 36 hrs of in vitro culture. Expression of TNF-$\alpha$ mRNA was determined by Northern blotting. Freshly isolated HPBM express TNF-$\alpha$ mRNA which decays to basal levels by 6 hrs of in vitro culture. IFN-$\gamma$ treatment maintains TNF-$\alpha$ mRNA expression for up to 48 hrs of culture, after which it is undetectable. LPS induces TNF-$\alpha$ mRNA after 30 minutes of exposure with maximal accumulation occurring between 4 to 8 hrs. TNF mRNA was not detected in control HPBM at any time after 6 hrs or IFN-$\gamma$ treated HPBM after 48 hrs of in vitro culture. A pulse of LPS the last 24 hrs of in vitro culture induces the accumulation of TNF-$\alpha$ mRNA in HPBM cultured for 3, 5, and 7 days, with the magnitude of induction decreasing approximately 10 fold between 3 and 7 days. Induction of TNF-$\alpha$ mRNA occurred in the absence of detectable TNF-$\alpha$ protein or supernatant activity. Maturation of HPBM to macrophage-like cells controls competence for activation, magnitude and duration of the activation response. ^