49 resultados para antigen specific expression
Resumo:
Cytochrome P450 3As (CYP3As) are phase I enzymes responsible for metabolizing more than 50% of clinical drugs. Recent studies have revealed that expression of CYP3As is two-fold higher in women than in men leading to a faster metabolic clearance of therapeutic drugs in women. In this study, we analyzed the female specific rat CYP3A isoform, CYP3A9. We evaluated the effects of progesterone and estrogen on CYP3A9 regulation and showed a distinct role for estrogen in mediating female dominance of CYP3A9. We also observed changes in CYP3A9 expression at various stages of pregnancy which correlates well with varying physiological estradiol concentrations. In addition, by the in vitro data shows that estradiol mediated induction can be abrogated with estrogen receptor antagonist ICI182,780. We also identified three novel murine CYP3A isoforms CYP3A13, CYP3A41 and CYP3A44 and characterized their genomic structures and expression profiles. CYP3A41 and CYP3A44 show female specific expression but surprisingly this female dominance is not mediated via estrogen. Control male mice did not exhibit any CYP3A41 mRNA levels but showed minimal levels of CYP3A44. In order to gain insights into the governance ofαthe female specific genes, the hepatic regulation of CYP3A41 and CYP3A44 by the xeno-sensors PXR and CAR was examined. In female mice, pregnenolone-16α-carboxynitrile, suppressed CYP3A41 and CYP3A44 mRNA levels in PXR−/− background whereas dexamethasone-dependent suppression of CYP3A41 was mediated by PXR. In addition, phenobarbital challenge in PXR−/− revealed up-regulation of both CYP3A44, CYP3A41 levels only in males. No role for CAR was seen in the regulation of either CYP3A41 or CYP3A44 gene expression in female mice. Interestingly, PXR and CAR ligands induced male CYP3A44 levels in a receptor dependent fashion. This increase of CYP3A44 transcript in male mice is in contrast to the response seen in female mice, which clearly indicates an additional layer of regulation. Our findings suggest that gender plays a strategic role in directing the CAR/PXR mediated effects of CYP3A44/CYP3A41. This implies that differential regulation of female specific CYP3A isoforms may be the key to explain some of the gender differences observed in clearance of certain therapeutics like antidepressants and analgesics. ^
Resumo:
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a disease with world wide consequences, affecting nearly a third of the world's population. The established vaccine for TB; an attenuated strain of Mycobacterium bovis Calmette Guerin (BCG), has existed virtually unchanged since 1921. Intensive research is focused on developing a TB vaccine that can surpass and improve the existing BCG vaccine. Lactoferrin, an iron binding protein found in mucosal secretions and granules of neutrophils was hypothesized to be an ideal adjuvant to enhance the efficacy of the BCG vaccine. Specifically, Lactoferrin enhanced the ratio of IL-12:IL-10 production from macrophages stimulated with LFS or infected with BCG, indicating the potential to affect T-cell development in vivo. Five different vaccination protocols were investigated for generation of host protective responses against MTB infection using Lactoferrin admixed to the BCG vaccine. Mice immunized and boosted at 2 weeks with BCG/Lactofefrin increased host protection against MTB infection by decreasing organ bacterial load and reducing lung histopathology. The observed postchallenge results paralleled with increasing production of IFN-γ, IL-2, TNF-α, and IL-12 from BCG stimulated splenocytes. In vitro studies examined possible mechanisms of Lactoferrin action on BCG infected macrophages and dendritic cells. Addition of Lactoferrin to BCG infected macrophages and dendritic cells increased stimulation of presensitized CD3+ and CD4+ T-cells. Analysis by fluorescent activated cell sorting (FACS) revealed an increase in surface expression of MHC I and decreased ratio of CD80/86 from BCG infected macrophages cultured with Lactoferrin. In contrast, Lactoferrin decreased surface expression of MHC I, MHC II, CD80, CD86, and CD40, but increased CD 11c, from BCG infected dendritic cells, indicating involvement of adhesion molecules. Overall, these studies indicate that Lactoferrin is a useful and effective adjuvant to improve efficacy of the BCG vaccine by enhancing generation of mycobacterial antigen specific T-cell responses through promotion of antigen presentation and T-cell stimulation.^
Resumo:
This dissertation examines the biological functions and the regulation of expression of DNA ligase I by studying its expression under different conditions.^ The gene expression of DNA ligase I was induced two- to four-fold in S-phase lymphoblastoid cells but was decreased to 15% of control after administration of a DNA damaging agent, 4-nitroquinoline-1-oxide. When cells were induced into differentiation, the expression level of DNA ligase I was decreased to less than 15% of that of the control cells. When the gene of DNA ligase I was examined for tissue specific expression in adult rats, high levels of DNA ligase I mRNA were observed in testis (8-fold), intermediate levels in ovary and brain (4-fold), and low levels were found in intestine, spleen, and liver (1- to 2-fold).^ In confluent cells of normal skin fibroblasts, UV irradiation induced the gene expression of DNA ligase I at 24 and 48 h. The induction of DNA ligase I gene expression requires active p53 protein. Introducing a vector containing the wild type p53 protein in the cells caused an induction of the DNA ligase I protein 24 h after the treatment.^ Our results indicate that, in addition to the regulation by phosphorylation/dephosphorylation, cellular DNA ligase I activity can be regulated at the gene transcription level, and the p53 tumor suppresser is one of the transcription factors for the DNA ligase I gene. Also, our results suggest that DNA ligase I is involved in DNA repair as well as in DNA replication.^ Also, as an early attempt to clone the human homolog of the yeast CDC9 gene which has been shown to be involved in DNA replication, DNA repair, and DNA recombination, we have identified a human gene with mRNA of 1.7 kb. This dissertation studies the gene regulation and the possible biological functions of this new human gene by examining its expression at different stages of the cell cycle, during cell differentiation, and in cellular response to DNA damage.^ The new gene that we recently identified from human cells is highly expressed in brain and reproductive organs (BRE). This BRE gene encodes an mRNA of 1.7-1.9 kb, with an open reading frame of 1,149 bp, and gives rise to a deduced polypeptide of 383 amino acid residues. No extensive homology was found between BRE and sequences from the EMBL-Gene Banks. BRE showed tissue-specific expression in adult rats. The steady state mRNA levels were high in testis (5-6 fold), ovary and brain (3-4 fold) compared to the spleen level, but low in intestine and liver (1-2 fold). The expression of this gene is responsive to DNA damage and/or retinoic acid (RA) treatment. Treatment of fibroblast cells with UV irradiation and 4-nitroquinoline-1-oxide caused more than 90% and 50% decreases in BRE mRNA, respectively. Similar decreases in BRE expression were observed after treatment of the brain glioma cell line U-251 and the promyelocytic cell line HL-60 with retinoic acid. (Abstract shortened by UMI). ^
Resumo:
To understand how the serum amyloid A (SAA) genes are regulated, the cis-acting elements and trans-acting factors involved in the regulation of mouse SAA3 and rat SAA1 genes expression during inflammation were analyzed.^ To identify DNA sequences involved in the liver-specific expression of the mouse SAA3 gene, the 5$\sp\prime$ flanking region of this gene was analyzed by transient transfection studies. Results suggest that C/EBP, a liver-enriched transcription factor, plays an important role for the enhanced expression of the mouse SAA3 gene in hepatocytes.^ Transfection studies of the regulation of the expression of rat SAA1 gene indicated that a 322 bp fragment ($-$304 to +18) of the gene contains sufficient information for cytokine-induced expression of the reporter gene in a liver cell-specific manner. Further functional analysis of the 5$\sp\prime$ flanking region of the rat SAA1 gene demonstrated that a 65 bp DNA fragment ($-$138/$-$73) can confer cytokine-inducibility onto a heterologous promoter both in liver and nonliver cells. DNase I footprint and gel retardation assays identified five putative cis-regulatory elements within the 5$\sp\prime$ flanking region of the gene: one inducible element, a NF$\kappa$B binding site and four constitutive elements. Two constitutive elements, footprint regions I and III, were identified as C/EBP binding sites with region III having over a 10-fold higher affinity for C/EBP binding than region I. Functional analysis of the cis-elements indicated that C/EBP(I) and C/EBP(III) confer liver cell-specific activation onto a heterologous promoter, while sequences corresponding to the NF$\kappa$B element and C/EBP(I) impart cytokine responsiveness onto the heterologous promoter. These results suggest that C/EBP(I) possesses two functions: liver-specific activation and cytokine responsiveness. The identification of two cytokine responsive elements (NF$\kappa$B and C/EBP(I)), and two liver-specific elements (C/EBP(I) and C/EBP(III)) implies that multiple cis-acting elements are involved in the regulation of the expression of the rat SAA1 gene. The tissue-specific and cytokine-induced expression of rat SAA1 gene is likely the result of the interactions of these cis-acting elements with their cognate trans-acting factors as well as the interplay between the different cis-acting elements and their binding factors. (Abstract shortened with permission of author.) ^
Resumo:
Adjuvants are essential components of vaccine formulations that enhance adaptive immune responses to antigens, particularly for immunizations targeting the tolerogenic mucosal tissues, which are more biologically relevant for protective immunity against pathogens transmitted by the mucosal routes. Adjuvants possess the inherent capacity to bridge innate and adaptive immune responses through activating innate immune mediators. Here evidence is presented in support of the effectiveness of a synthetic glycolipid, alpha-Galactosylceramide (-GalCer), as an adjuvant for mucosal immunization with peptide and protein antigens, by oral and intranasal routes, to prime antigen-specific immune responses in multiple systemic and mucosal compartments. The adjuvant activity of -GalCer delivered by the intranasal route was manifested in terms of potent activation of NKT cells, an important innate immunity mediator, along with the activation of dendritic cells (DC) which serve as the professional antigen-presenting cells. Data from this investigation provide the first evidence for mucosal delivery as an effective means to harness the adjuvant potential of α-GalCer for priming as well as boosting cellular immune responses to co-administered immunogens. Unlike systemic administration where a single dose of α-GalCer leads to anergy of responding NKT cells and thus hinders delivery of booster immunizations, we demonstrated that administration of multiple doses of α-GalCer by the intranasal route affords repeated activation of NKT cells and the induction of broad systemic and mucosal immunity. This is specifically advantageous, and may be even essential, for vaccination regimens against mucosal pathogens such as the human immunodeficiency virus (HIV) and the human papillomavirus (HPV), where priming of durable protective immunity at the mucosal portals of pathogen entry would be highly desirable.
Resumo:
Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.
Resumo:
Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.
Resumo:
The BRAF oncogene demonstrates a characteristic mutation (V600E) in a significant fraction of cutaneous melanomas, leading to constitutive activation of the MAP kinase pathway. This genetic lesion endows tumor cells with proliferative and survival advantages, and metastatic melanoma patients treated with the BRAF(V600E)-specific inhibitor, Vemurafenib, have shown dramatic clinical responses. Here, I show that BRAF(V600E) induces transcription of the IL-1α and IL-1β genes in both melanocytes and melanoma cell lines and that this upregulation is specifically abrogated by targeted BRAF(V600E) inhibitors. Furthermore, treatment of melanoma tumor-associated fibroblasts (TAFs) with IL-1α/β significantly enhanced the ability of TAFs to suppress the proliferation and function of melanoma antigen-specific cytotoxic T cells. IL-1α/β treatment of TAFs upregulated multiple immunosuppressive factors, including COX-2 and the PD-1 ligands PD-L1 and PD-L2. Specific BRAF(V600E) inhibitors largely abrogated the ability of melanoma cells to confer T cell-suppressive properties on TAFs. These results support a model in which BRAF(V600E) promotes immune suppression in the melanoma tumor environment through an IL-1-mediated mechanism involving resident stromal fibroblasts. Based on these findings, combination therapies involving targeted BRAF inhibition and T cell-based immunotherapies are warranted.
Resumo:
The expression of the chicken fast skeletal myosin alkali light chain (MLC) 3f is subject to complex patterns of control by developmental and physiologic signals. Regulation over MLC3f gene expression is thought to be exerted primarily at the transcriptional level. The purpose of this dissertation was to identify cis-acting elements on the 5$\sp\prime$ flanking region of chicken MLC3f gene that are important for transcriptional regulation. The results show that the 5$\sp\prime$ flanking region of MLC3f gene contains multiple cis-acting elements. The nucleotide sequence of these elements demonstrates a high degree of conservation between different species and are also found in the 5$\sp\prime$ flanking regions of many muscle protein genes. The first regulatory region is located between $-$185 and $-$150 bp from the transcription start site and contains an AT-rich element. Linker scanner analyses have revealed that this element has a positive effect on transcription of the MLC3f promoter. Furthermore, when linked to a heterologous viral promoter, it can enhance reporter gene expression in a muscle-specific manner, independent of distance or orientation.^ The second regulatory region is located between $-$96 and $-$64 from the transcription start site. Sequences downstream of $-$96 have the capacity to drive muscle-specific reporter gene expression, although the region between $-$96 and $-$64 has no intrinsic enhancer-like activity. Linker scanner analyses have identified a GC-rich motif that required efficient transcription of the MLC3f promoter. Mutations to this region of DNA results in diminished capacity to drive reporter gene expression and is correlated with disruption of the ability to bind sequence-specific transcription factors. These sequence-specific DNA-binding proteins were detected in both muscle and non-muscle extracts. The results suggest that the mere presence or absence of transcription factors cannot be solely responsible for regulation of MLC3f expression and that tissue-specific expression may arise from complex interactions with muscle-specific, as well as more ubiquitous transcription factors with multiple regulatory elements on the gene. ^
Resumo:
The skin immune system is believed to be a crucial site of contact between immunocompetent cells and invading organisms. A novel T cell component of murine epidermis is the Thy-1$\sp+$ dendritic epidermal cell (Tdec). To assess the immunocompetence of Tdec, the ability of Tdec to induce immune responses was tested. Tdec were unable to induce positive immune responses in three models of immunocompetence. Subsequent studies were designed to test the hypothesis that Tdec are involved in the down-regulation of cell-mediated immunity against cutaneous antigens. Cultured Tdec lines were conjugated in vitro with the hapten, fluorescein isothiocyanate (FITC). The intrafootpad (ifp.) or intravenous (i.v.) injection of FTIC-conjugated Tdec induced immunologic tolerance to subsequent epicutaneous sensitization with FITC. This induction of tolerance was antigen-specific, and injection of unconjugated Tdec had no effect on the contact hypersensitivity response to FITC. Tolerance was not H-2-restricted, since it could be induced in both syngeneic and allogeneic recipients of FITC-conjugated Tdec. No suppressive activity could be detected in lymphoid organs of animals tolerized by the ifp. injection of hapten-conjugated Tdec. In contrast, suppressor T cells were present in the spleens of mice injected i.v. with hapten-conjugated Tdec. These results indicate that Ts cells are not involved in the induction of tolerance by the ifp. injection of hapten-conjugated Tdec. To investigate the mechanism by which the ifp. injection of hapten-conjugated Tdec induced tolerance to contact sensitization, the activity of these cells was measured in vitro. The addition of hapten-conjugated Tdec inhibited the proliferation of Con A-stimulated lymphocytes. In addition, FITC-conjugated Tdec abrogated the proliferation of normal lymphocytes in response to FITC-labeled stimulator cells. These studies suggest that specific T cell-mediated immunity is the target of the inhibitory effect of Tdec in vitro. In summary, these results demonstrate that while Tdec are unable to induce positive immune responses, they can produce a state of specific immunologic tolerance when injected ifp. or i.v. These results also suggest that the induction of immunologic tolerance by hapten-conjugated Tdec may occur through the inactivation or elimination of activated T lymphocytes resulting in down-regulation of cell-mediated immunity against cutaneous antigens. ^
Resumo:
Aniridia (AN) is a congenital, panocular disorder of the eye characterized by the complete or partial absence of the iris. The disease can occur in both the sporadic and familial forms which, in the latter case, is inherited as an autosomal dominant trait with high penetrance. The objective of this study was to isolate and characterize the genes involved in AN and Sey, and thereby to gain a better understanding of the molecular basis of the two disorders.^ Using a positional cloning strategy, I have approached and cloned from the AN locus in human chromosomal band 11p13 a cDNA that is deleted in two patients with AN. The deletions in these patients overlap by about 70 kb and encompass the 3$\sp\prime$ end of the cDNA. This cDNA detects a 2.7 kb mRNA encoded by a transcription unit estimated to span approximately 50 kb of genomic DNA. The message is specifically expressed in all tissues affected in all forms of AN, namely within the presumptive iris, lens, neuroretina, the superficial layers of the cornea, the olfactory bulbs, and the cerebellum. Sequence analysis of the AN cDNA revealed a number of motifs characteristic of certain transcription factors. Chief among these are the presence of the paired domain, the homeodomain, and a carboxy-terminal domain rich in serine, threonine and proline residues. The overall structure shows high homology to the Drosophila segmentation gene paired and members of the murine Pax family of developmental control genes.^ Utilizing a conserved human genomic DNA sequence as probe, I was able to isolate an embryonic murine cDNA which is over 92% homologous in nucleotide sequence and virtually identical at the amino acid level to the human AN cDNA. The expression pattern of the murine gene is the same as that in man, supporting the conclusion that it probably corresponds to the Sey gene. Its specific expression in the neuroectodermal component of the eye, in glioblastomas, but not in the neural crest-derived PC12 pheochromocytoma cell line, suggests that a defect in neuroectodermal rather mesodermal development might be the common etiological factor underlying AN and Sey. ^
Resumo:
I have cloned cDNAs corresponding to two distinct genes, Xlmf1 and Xlmf25, which encode skeletal muscle-specific, transcriptional regulatory proteins. These proteins are members of the helix-loop-helix family of DNA binding factors, and are most homologous to MyoD1. These two genes have disparate temporal expression patterns during early embryogenesis; although, both transcripts are present exclusively in skeletal muscle of the adult. Xlmf1 is first detected 7 hours after fertilization, shortly after the midblastula transition. Xlmf25 is detected in maternal stores of mRNA, during early cleavage stages of the embryo and throughout later development. Both Xlmf1 and Xlmf25 transcripts are detected prior to the expression of other, previously characterized, muscle-specific genes. The ability of Xlmf1 and Xlmf25 to convert mouse 10T1/2 fibroblasts to a myogenic phenotype demonstrates their activity as myogenic regulatory factors. Additionally, Xlmf1 and Xlmf25 can directly transactivate a reporter gene linked to the muscle-specific, muscle creatine kinase (MCK) enhancer. The functional properties of Xlmf1 and Xlmf25 proteins were further explored by investigating their interactions with the binding site in the MCK enhancer. Analysis of dissociation rates revealed that Xlmf25-E12 dimers had a two-fold lower avidity for this site than did Xlmf1-E12 dimers. Clones containing genomic sequence of Xlmf1 and Xlmf25 have been isolated. Reporter gene constructs containing a lac-z gene driven by Xlmf1 regulatory sequences were analyzed by embryo injections and transfections into cultured muscle cells. Elements within $-$200 bp of the transcription start site can promote high levels of muscle specific expression. Embryo injections show that 3500 bp of upstream sequence is sufficient to drive somite specific expression. EMSAs and DNAse I footprint analysis has shown the discrete interaction of factors with several cis-elements within 200 bp of the transcription start site. Mutation of several of these elements shows a positive requirement for two CCAAT boxes and two E boxes. It is evident from the work performed with this promoter that Xlmf1 is tightly regulated during muscle cell differentiation. This is not surprising given the fact that its gene product is crucial to the determination of cell fate choices. ^
Mechanism of dendritic epidermal T cell-mediated tolerance induction and inhibition of proliferation
Resumo:
Dendritic epidermal T cells (DETC) comprise a unique population of T cells that reside in mouse epidermis and whose function remains unclear. Most DETC express a $\gamma\delta$ TCR, although some, including our DETC line, AU16, express an $\alpha\beta$ TCR. Additionally, AU16 cells express CD3, Thy-1, CD45, CD28, B7, and AsGM-1. Previous studies in our laboratory demonstrated that hapten-conjugated AU16 could induce specific immunologic tolerance in vivo and inhibit T cell proliferation in vitro. Both these activities are antigen-specific, and the induction of tolerance is non-MHC-restricted. In addition, AU16 cells are cytotoxic to a number of tumor cell lines in vitro. These studies suggested a role for these cells in immune surveillance. The purpose of my studies was to test the hypothesis that these functions of DETC (tolerance induction, inhibition of T cell proliferation, and tumor cell killing) were mediated by a cytotoxic mechanism. My specific aims were (1) to determine whether AU16 could prevent or delay tumor growth in vivo; and (2) to determine the mechanism whereby AU16 induce tolerance, using an in vitro proliferation assay. I first showed that AU16 cells killed a variety of skin tumor cell lines in vitro. I then demonstrated that they prevented melanoma growth in C3H mice when both cell types were mixed immediately prior to intradermal (i.d.) injection. Studies using the in vitro proliferation assay confirmed that DETC inhibit proliferation of T cells stimulated by hapten-bearing, antigen-presenting cells (FITC-APC). To determine which cell was the target, $\gamma$-irradiated, hapten-conjugated AU16 were added to the proliferation assay on d 4. They profoundly inhibited the proliferation of naive T cells to $\gamma$-irradiated, FITC-APC, as measured by ($\sp3$H) TdR uptake. This result strongly suggested that the T cell was the target of the AU16 activity because no APC were present by d 4 of the in vitro culture. In contrast, the addition of FITC-conjugated splenic T cells (SP-T) or lymph node T cells (LN-T) was less inhibitory. Preincubation of the T cells with FITC-AU16 cells for 24 h, followed by removal of the AU16 cells, completely inhibited the ability of the T cells to proliferate in response to FITC-APC, further supporting the conclusion that the T cell was the target of the AU16. Finally, AU16 cells were capable of killing a variety of activated T cells and T cell lines, arguing that the mechanism of proliferation inhibition, and possibly tolerance induction is one of cytotoxicity. Importantly, $\gamma\delta$ TCR$\sp+$ DETC behaved, both in vivo and in vitro like AU16, whereas other T cells did not. Therefore, these results are consistent with the hypothesis that AU16 cells are true DETC and that they induce tolerance by killing T cells that are antigen-activated in vivo. ^
Resumo:
Inhibition of local host immune reactions is one mechanism contributing to tumor progression. To determine if alterations in local immune functioning occur during colon carcinogenesis, a model mucosal immune response, type I hypersensitivity against the intestinal parasite Trichinella spiralis, was first characterized in normal mice and then examined during experimental colon carcinogenesis. Segments of sensitized colon mounted in Ussing chambers and challenged with T. spiralis-derived antigen resulted in a rise in short-circuit current ($\rm\Delta I\sb{sc}$) that was antigen-specific and inhibited by furosemide, implicating epithelial Cl$\sp-$ secretion as the ionic mechanism. The immune-regulated Cl$\sp-$ secretion by colonic epithelial cells required the presence of mast cells with surface IgE. Inhibition of potential anaphylactic mediators with various pharmacological agents in vitro implicated prostaglandins and leukotrienes as the principal mediators of the antigen-induced $\rm\Delta I\sb{sc}$, with 5-hydroxytryptamine also playing a role. Distal colon from immune mice fed an aspirin-containing diet (800 mg/kg powdered diet) ad libitum for 6 wk had a decreased response to antigen, confirming the major role of prostaglandins in generating the colonic I$\sb{\rm sc}$. To determine the effects of early stages of colon carcinogenesis on this mucosal immune response, mice were immunized with T. spiralis 1 day after or 8 wk prior to the first of 6 weekly injections of the procarcinogen 1,2-dimethylhydrazine (DMH). Responsiveness to antigenic challenge was suppressed in the distal colon 4-6 wk after the final injection of DMH. One injection of DMH was not sufficient to inhibit antigen responsiveness. The colonic epithelium remained sensitive to direct stimulation by exogenous Cl$\sp-$ secretagogues. Decreased antigen-induced $\rm\Delta I\sb{sc}$ in the distal colon was not due to systemic immune suppression by DMH, as the proximal colon and jejunum maintained responsiveness to antigen. Also, rejection of a secondary T. spiralis infection from the small intestine was not altered. Tumors eventually developed 25-30 wk after the final injection of DMH only in the distal portions of the colon. These results suggest that early stages of DMH-induced colon carcinogenesis manipulate the microenvironment such that mucosal immune function, as measured by immune-regulated Cl$\sp-$ secretion, is suppressed in the distal colon, but not in other regions of the gut. Future elucidation of the mechanisms by which this localized inhibition of immune-mediated ion transport occurs may provide possible clues to the microenvironmental changes necessary for tumor progression in the distal colon. ^
Resumo:
MEF2 is a $\underline{\rm m}$yocyte-specific $\underline{\rm e}$nhancer-binding $\underline{\rm f}$actor that binds a conserved DNA sequence, CTA(A/T)$\sb4$TAG. A MEF2 binding site in the XMyoDa promoter overlaps with the TATA box and is required for muscle specific expression. To examine the potential role of MEF2 in the regulation of MyoD transcription during early development, the appearance of MEF2 binding activity in developing Xenopus embryos was analyzed with the electrophoretic mobility shift assay. Two genes were isolated from a X. Laevis stage 24 cDNA library that encode factors that bind the XMyoDa TFIID/MEF2 site. Both genes are highly homologous to each other, belong to the MADS ($\underline{\rm M}$CM1-$\underline{\rm A}$rg80-agamous-$\underline{\rm d}$eficiens-$\underline{\rm S}$RF) protein family, and most highly related to the mammalian MEF2A gene, hence they are designated as XMEF2A1 and XMEF2A2. Proteins encoded by both cDNAs form specific complexes with the MEF2 binding site and show the same binding specificity as the endogenous MEF2 binding activity. XMEF2A transcripts accumulate preferentially in developing somites after the appearance of XMyoD transcripts. XMEF2 protein begins to accumulate in somites at tailbud stages. Transcriptional activation of XMyoD promoter by XMEF2A required only the MADS box and MEF2-specific domain when XMEF2A is bound at the TATA box. However, a different downstream transactivation domain was required when XMEF2A activates transcription through binding to multiple upstream sites. These results suggest that different activation mechanisms are involved, depending on where the factor is bound. Mutations in several basic amino acid clusters in the MADS box inhibit DNA binding suggesting these amino acids are essential for DNA binding. Mutation of Thr-20 and Ser-36 to the negatively charged amino acid residue, aspartic acid, abolish DNA binding. XMEF2A activity may be regulated by phosphorylation of these amino acids. A dominant negative mutant was made by mutating one of the basic amino acid clusters and deleting the downstream transactivation domain. In vivo roles of MEF2 in the regulation of MyoD transcription were investigated by overexpression of wild type MEF2 and dominant negative mutant of XMEF2A in animal caps and assaying for the effects on the level of expression of MyoD genes. Overexpression of MEF2 activates the transcription of endogenous MyoD gene family while expression of a dominant negative mutant reduces the level of transcription of XMRF4 and myogenin genes. These results suggest that MEF2 is downstream of MyoD and Myf5 and that MEF2 is involved in maintaining and amplifying expression of MyoD and Myf5. MEF2 is upstream of MRF4 and myogenin and plays a role in activating their expression. ^