21 resultados para adrenergic
Resumo:
A growing number of studies show strong associations between stress and altered immune function. In vivo studies of chronic and acute stress have demonstrated that cognitive stressors are strongly correlated with high circulating levels of catecholamines (CT) and corticosteroids (CS) that are associated with changes in type-1/type-2 cytokine expression. Although individual pharmacologic doses of CS and CT can inhibit the expression of T-helper 1 (Th1, type-1 like) and promote the production of T-helper 2 (Th2, type-2 like) cytokines in antigen-specific and mitogen stimulated human leukocyte cultures in vitro, little attention has been focused on the effects of combination physiologic-stress doses of CT and CS that may be more physiologically relevant. In addition, both in-vivo and in-vitro studies suggest that the differential expression of the B7 family of costimulatory molecules CD80 and CD86 may promote the expression of type-1 or type-2 cytokines, respectively. Furthermore, corticosteroids can influence the expression of β2-adrenergic receptors in various human tissues. We therefore investigated the combined effects of physiologic-stress doses of in vitro CT and CS upon the type-1/type-2 cytokine balance and expression of B7 costimulatory molecules of human peripheral blood mononuclear cells (PBMC) as a model to study the immunomodulatory effects of physiologic stress. Results demonstrated a significant decrease in type-1 cytokine expression and a significant increase in type-2 cytokine production in our CS+CT incubated cultures when compared to either CT or CS agents alone. In addition, we demonstrated the differential expression of CD80/CD86 in favor of CD86 at the cellular and population level as determined by flow cytometry in lipopolysaccharide stimulated human Monocytes. Furthermore, we developed flow cytometry based assays to detect total β2AR in human CD4+ T-lymphocytes that demonstrated decreased expression of β2AR in mitogen stimulated CD4+ T-lymphocytes in the presence of physiologic stress levels of CS and CT as single in vitro agents, however, when both CS and CT were combined, significantly higher expression of β2AR was observed. In summary, our in vitro data suggest that both CS and CT work cooperatively to shift immunity towards type-2 responses. ^
Resumo:
One of the most critical aspects of G Protein Coupled Receptors (GPCRs) regulation is their rapid and acute desensitization following agonist stimulation. Phosphorylation of these receptors by GPCR kinases (GRK) is a major mechanism of desensitization. Considerable evidence from studies of rhodopsin kinase and GRK2 suggests there is an allosteric docking site for the receptor distinct from the GRK catalytic site. While the agonist-activated GPCR appears crucial for GRK activation, the molecular details of this interaction remain unclear. Recent studies suggested an important role for the N- and C-termini and domains in the small lobe of the kinase domain in allosteric activation; however, neither the mechanism of action of that site nor the RH domain contributions have been elucidated. To search for the allosteric site, we first indentified evolutionarily conserved sites within the RH and kinase domains presumably deterministic of protein function employing evolutionary trace (ET) methodology and crystal structures of GRK6. Focusing on a conserved cluster centered on helices 3, 9, and 10 in the RH domain, key residues of GRK5 and 6 were targeted for mutagenesis and functional assays. We found that a number of double mutations within helices 3, 9, and 10 and the N-terminus markedly reduced (50–90%) the constitutive phosphorylation of the β-2 Adrenergic Receptor (β2AR) in intact cells and phosphorylation of light-activated rhodopsin (Rho*) in vitro as compared to wild type (WT) GRK5 or 6. Based on these results, we designed peptide mimetics of GRK5 helix 9 both computationally and through chemical modifications with the goal of both confirming the importance of helix 9 and developing a useful inhibitor to disrupt the GPCR-GRK interaction. Several peptides were found to block Rho* phosphorylation by GRK5 including the native helix 9 sequence, Peptide Builder designed-peptide preserving only the key ET residues, and chemically locked helices. Most peptidomimetics showed inhibition of GRK5 activity greater than 80 % with an IC50 of ∼ 30 µM. Alanine scanning of helix 9 has further revealed both essential and non-essential residues for inhibition. Importantly, substitution of Arg 169 by an alanine in the native helix 9-based peptide gave an almost complete inhibition at 30 µM with an IC50 of ∼ 10 µM. In summary we report a previously unrecognized crucial role for the RH domain of GRK5 and 6, and the subsequent identification of a lead peptide inhibitor of protein-protein interaction with potential for specific blockade of GPCR desensitization. ^
Resumo:
Background: Activation of the sympathetic nervous system (SNS) in response to chronic biobehavioral stress results in high levels of catecholamines and persistent activation of adrenergic signaling, which promotes tumor growth and progression. However it is unknown how catecholamine levels within the tumor exceed systemic levels in circulation. I hypothesized that neo-innervation of tumors is required for stress-mediated effects on tumor growth. Results: First, I examined whether sympathetic nerves are present in human ovarian cancer samples as well as orthotopic ovarian cancer models. Immunohistochemical (IHC) staining for neurofilament revealed that catecholaminergic neurons are present within tumor tissue. In order to determine whether chronic stress affects the density of nerves in the tumor, I utilized an orthotopic mouse model of ovarian cancer that was exposed to daily restraint stress. IHC analysis revealed that nerve density in tumors increased by more than three-fold in stressed animals versus non-stressed controls. IHC analysis suggested that this results from both recruitment of existing neurons (axonogenesis) as well as new neuron formation (neurogenesis) within the tumor. To determine how tumors are recruiting nerve growth, I utilized a PCR array analysis of 84 nerve growth related genes and their receptors, which showed that stimulation of the SKOV3 ovarian cancer cell line with norepinephrine (NE) leads to increased expression of several neurotrophins, including brain-derived neurotrophic factor (BDNF). Neurite extension assays showed that media conditioned by ovarian cancer cell lines is capable of inducing neurite outgrowth in differentiated neuron-like PC12 cells, and NE treatment of cancer cells potentiates this effect. Norepinephrine-induced neurite extension was abolished after BDNF silencing by siRNA, suggesting that BDNF is critical to tumor cell-induced nerve growth. in vivo BDNF inhibition resulted in complete abrogation of stress-induced increases in tumor weight and nerve density, as well as downstream markers of stress. Discussion: These studies indicate that adrenergic signalling induced by chronic stress promotes neo-innervation in the tumor microenvironment. This results in a mutually beneficial relationship between the tumor cells and neurons. This work is crucial for providing a link between chronic stress and its effects on the tumor and its microenvironment. The data shown here aims to open new venues that can be used in development of therapies designed to block the stress effects on tumor growth.
Resumo:
Development of homology modeling methods will remain an area of active research. These methods aim to develop and model increasingly accurate three-dimensional structures of yet uncrystallized therapeutically relevant proteins e.g. Class A G-Protein Coupled Receptors. Incorporating protein flexibility is one way to achieve this goal. Here, I will discuss the enhancement and validation of the ligand-steered modeling, originally developed by Dr. Claudio Cavasotto, via cross modeling of the newly crystallized GPCR structures. This method uses known ligands and known experimental information to optimize relevant protein binding sites by incorporating protein flexibility. The ligand-steered models were able to model, reasonably reproduce binding sites and the co-crystallized native ligand poses of the β2 adrenergic and Adenosine 2A receptors using a single template structure. They also performed better than the choice of template, and crude models in a small scale high-throughput docking experiments and compound selectivity studies. Next, the application of this method to develop high-quality homology models of Cannabinoid Receptor 2, an emerging non-psychotic pain management target, is discussed. These models were validated by their ability to rationalize structure activity relationship data of two, inverse agonist and agonist, series of compounds. The method was also applied to improve the virtual screening performance of the β2 adrenergic crystal structure by optimizing the binding site using β2 specific compounds. These results show the feasibility of optimizing only the pharmacologically relevant protein binding sites and applicability to structure-based drug design projects.
Resumo:
$\beta$-adrenergic receptor-mediated activation of adenylate cyclase exhibits an agonist-specific separation between the dose/response curve (characterized by the EC$\sb{50}$) and the dose/binding curve (characterized by the K$\sb{\rm d}$). Cyclase activity can be near-maximal when receptor occupancy is quite low (EC$\sb{50}$ $\ll$ K$\sb{\rm d}$). This separation between the binding and response curves can be explained by the assumption that the rate of cyclase activation is proportional to the concentration of agonist-bound receptors, since the receptor is mobile and can activate more than one cyclase (the Collision Coupling Model of Tolkovsky and Levitzki). Here it is established that agonist binding frequency plays an additional role in adenylate cyclase activation in S49 murine lymphoma cells. Using epinephrine (EC$\sb{50}$ = 10 nM, K$\sb{\rm d}$ = 2 $\mu$M), the rate of cyclase activation decreased by 80% when a small (1.5%) receptor occupancy was restricted (by addition of the antagonist propranolol) to a small number (1.5%) of receptors rather than being proportionally distributed among the cell's entire population of receptors. Thus adenylate cyclase activity is not proportional to receptor occupancy in all circumstances. Collisions between receptor and cyclase pairs apparently occur a number of times in rapid sequence (an encounter); the high binding frequency of epinephrine ensures that discontiguous regions of the cell surface experience some period of agonist-bound receptor activity per small unit time minimizing "wasted" collisions between activated cyclase and bound receptor within an encounter. A contribution of agonist binding frequency to activation is thus possible when: (1) the mean lifetime of the agonist-receptor complex is shorter than the mean encounter time, and (2) the absolute efficiency (intrinsic ability to promote cyclase activation per collision) of the agonist-receptor complex is high. These conclusions are supported by experiments using agonists of different efficiencies and binding frequencies. These results are formalized in the Encounter Coupling Model of adenylate cyclase activation, which takes into explicit account the agonist binding frequency, agonist affinity for the $\beta$-adrenergic receptor, agonist efficiency, encounter frequency and the encounter time between receptor and cyclase. ^
Resumo:
The Two State model describes how drugs activate receptors by inducing or supporting a conformational change in the receptor from “off” to “on”. The beta 2 adrenergic receptor system is the model system which was used to formalize the concept of two states, and the mechanism of hormone agonist stimulation of this receptor is similar to ligand activation of other seven transmembrane receptors. Hormone binding to beta 2 adrenergic receptors stimulates the intracellular production of cyclic adenosine monophosphate (cAMP), which is mediated through the stimulatory guanyl nucleotide binding protein (Gs) interacting with the membrane bound enzyme adenylylcyclase (AC). ^ The effects of cAMP include protein phosphorylation, metabolic regulation and transcriptional regulation. The beta 2 adrenergic receptor system is the most well known of its family of G protein coupled receptors. Ligands have been scrutinized extensively in search of more effective therapeutic agents at this receptor as well as for insight into the biochemical mechanism of receptor activation. Hormone binding to receptor is thought to induce a conformational change in the receptor that increases its affinity for inactive Gs, catalyzes the release of GDP and subsequent binding of GTP and activation of Gs. ^ However, some beta 2 ligands are more efficient at this transformation than others, and the underlying mechanism for this drug specificity is not fully understood. The central problem in pharmacology is the characterization of drugs in their effect on physiological systems, and consequently, the search for a rational scale of drug effectiveness has been the effort of many investigators, which continues to the present time as models are proposed, tested and modified. ^ The major results of this thesis show that for many b2 -adrenergic ligands, the Two State model is quite adequate to explain their activity, but dobutamine (+/−3,4-dihydroxy-N-[3-(4-hydroxyphenyl)-1-methylpropyl]- b -phenethylamine) fails to conform to the predictions of the Two State model. It is a weak partial agonist, but it forms a large amount of high affinity complexes, and these complexes are formed at low concentrations much better than at higher concentrations. Finally, dobutamine causes the beta 2 adrenergic receptor to form high affinity complexes at a much faster rate than can be accounted for by its low efficiency activating AC. Because the Two State model fails to predict the activity of dobutamine in three different ways, it has been disproven in its strictest form. ^