23 resultados para adrenal cortex hormones


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Morphine is the most common clinical choice in the management of severe pain. Although the molecular mechanisms of morphine have already been characterized, the cerebral circuits by which it attenuates the sensation of pain have not yet been studied in humans. The objective of this two-arm (morphine versus placebo), between-subjects study was to examine whether morphine affects pain via pain-related cortical circuits, but also via reward regions that relate to the motivational state, as well as prefrontal regions that relate to vigilance as a result of morphine's sedative effects. Cortical activity was measured by the blood-oxygen-level-dependent (BOLD) signal changes using functional magnetic resonance imaging (fMRI). ^ The novelty of this study is at three levels: (i) to develop a methodology that will assess the average BOLD signal across subjects for the pain, reward, and vigilance cortical systems; (ii) to examine whether the reward and/or sedative effects of morphine are contributing factors to cortical regions associated with the motivational state and vigilance; and (iii) to propose a neuroanatomical model related to the opioid-sensitive effects of reward and sedation as a function of cortical activity related to pain in an effort to assess future analgesics. ^ Consistent with our hypotheses, our findings showed that the decrease in total pain-related volume activated between the post- and the pre-treatment morphine group was about 78%, while the post-treatment placebo group displayed only a 5% decrease when compared to pre-treatment levels of activation. The volume increase in reward regions was 451% in the post-treatment compared to the pre-treatment morphine condition. Finally, the volumetric decrease in vigilance regions was 63% in the posttreatment compared to the pre-treatment morphine condition. ^ These findings imply that changes in the blood flow of the reward and vigilance regions may be contributing factors in producing the analgesic effect under morphine administration. Future studies need to replicate this study in a higher resolution fMRI environment and to assess the proposed neuroanatomical model in patient populations. The necessity of pain research is apparent, since pain cuts across different diseases especially chronic ones, and thus, is recognized as a vital public health developing area. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hypertension is usually defined as having values of systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg. Hypertension is one of the main adverse effects of glucocorticoid on the cardiovascular system. Glucocorticoids are essential hormones, secreted from adrenal glands in circadian fashion. Glucocorticoid's effect on blood pressure is conveyed by the glucocorticoid receptor (NR3C1), an omnipresent nuclear transcription factor. Although polymorphisms in this gene have long been implicated to be a causal factor for cardiovascular diseases such as hypertension, no study has yet thoroughly interrogated the gene's polymorphisms for their effect on blood pressure levels. Therefore, I have first resequenced ∼30 kb of the gene, encompassing all exons, promoter regions, 5'/3' UTRs as well as at least 1.5 kb of the gene's flanking regions from 114 chromosome 5 monosomic cell lines, comprised of three major American ethnic groups—European American, African American and Mexican American. I observed 115 polymorphisms and 14 common molecularly phased haplotypes. A subset of markers was chosen for genotyping study populations of GENOA (Genetic Epidemiology Network of Atherosclerosis; 1022 non-Hispanic whites, 1228 African Americans and 954 Mexican Americans). Since these study populations include sibships, the family-based association test was performed on 4 blood pressure-related quantitative variables—pulse, systolic blood pressure, diastolic blood pressure and mean arterial pressure. Using these analyses, multiple correlated SNPs are significantly protective against high systolic blood pressure in non-Hispanic whites, which includes rsb198, a SNP formerly associated with beneficial body compositions. Haplotype association analysis also supports this finding and all p-values remained significant after permutation tests. I therefore conclude that multiple correlated SNPs on the gene may confer protection against high blood pressure in non-Hispanic whites. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than a century ago Ramon y Cajal pioneered the description of neural circuits. Currently, new techniques are being developed to streamline the characterization of entire neural circuits. Even if this 'connectome' approach is successful, it will represent only a static description of neural circuits. Thus, a fundamental question in neuroscience is to understand how information is dynamically represented by neural populations. In this thesis, I studied two main aspects of dynamical population codes. ^ First, I studied how the exposure or adaptation, for a fraction of a second to oriented gratings dynamically changes the population response of primary visual cortex neurons. The effects of adaptation to oriented gratings have been extensively explored in psychophysical and electrophysiological experiments. However, whether rapid adaptation might induce a change in the primary visual cortex's functional connectivity to dynamically impact the population coding accuracy is currently unknown. To address this issue, we performed multi-electrode recordings in primary visual cortex, where adaptation has been previously shown to induce changes in the selectivity and response amplitude of individual neurons. We found that adaptation improves the population coding accuracy. The improvement was more prominent for iso- and orthogonal orientation adaptation, consistent with previously reported psychophysical experiments. We propose that selective decorrelation is a metabolically inexpensive mechanism that the visual system employs to dynamically adapt the neural responses to the statistics of the input stimuli to improve coding efficiency. ^ Second, I investigated how ongoing activity modulates orientation coding in single neurons, neural populations and behavior. Cortical networks are never silent even in the absence of external stimulation. The ongoing activity can account for up to 80% of the metabolic energy consumed by the brain. Thus, a fundamental question is to understand the functional role of ongoing activity and its impact on neural computations. I studied how the orientation coding by individual neurons and cell populations in primary visual cortex depend on the spontaneous activity before stimulus presentation. We hypothesized that since the ongoing activity of nearby neurons is strongly correlated, it would influence the ability of the entire population of orientation-selective cells to process orientation depending on the prestimulus spontaneous state. Our findings demonstrate that ongoing activity dynamically filters incoming stimuli to shape the accuracy of orientation coding by individual neurons and cell populations and this interaction affects behavioral performance. In summary, this thesis is a contribution to the study of how dynamic internal states such as rapid adaptation and ongoing activity modulate the population code accuracy. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual cortex of macaque monkeys consists of a large number of cortical areas that span the occipital, parietal, temporal, and frontal lobes and occupy more than half of cortical surface. Although considerable progress has been made in understanding the contributions of many occipital areas to visual perceptual processing, much less is known concerning the specific functional contributions of higher areas in the temporal and frontal lobes. Previous behavioral and electrophysiological investigations have demonstrated that the inferotemporal cortex (IT) is essential to the animal's ability to recognize and remember visual objects. While it is generally recognized that IT consists of a number of anatomically and functionally distinct visual-processing areas, there remains considerable controversy concerning the precise number, size, and location of these areas. Therefore, the precise delineation of the cortical subdivisions of inferotemporal cortex is critical for any significant progress in the understanding of the specific contributions of inferotemporal areas to visual processing. In this study, anterograde and/or retrograde neuroanatomical tracers were injected into two visual areas in the ventral posterior and central portions of IT (areas PITv and CITvp) to elucidate the corticocortical connections of these areas with well known areas of occipital cortex and with less well understood regions of inferotemporal cortex. The locations of injection sites and the delineation of the borders of many occipital areas were aided by the pattern of interhemispheric connections, revealed following callosal transection and subsequent labeling with HRP. The resultant patterns of connections were represented on two-dimensional computational (CARET) and manual cortical maps and the laminar characteristics and density of the projection fields were quantified. The laminar and density features of these corticocortical connections demonstrate thirteen anatomically distinct subdivisions or areas distributed within the superior temporal sulcus and across the inferotemporal gyrus. These results serve to refine previous descriptions of inferotemporal areas, validate recently identified areas, and provide a new description of the hierarchical relationships among occipitotemporal cortical areas in macaques. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many mental disorders disrupt social skills, yet few studies have examined how the brain processes social information. Functional neuroimaging, neuroconnectivity and electrophysiological studies suggest that orbital frontal cortex plays important roles in social cognition, including the analysis of information from faces, which are important cues in social interactions. Studies in humans and non-human primates show that damage to orbital frontal cortex produces social behavior impairments, including abnormal aggression, but these studies have failed to determine whether damage to this area impairs face processing. In addition, it is not known whether damage early in life is more detrimental than damage in adulthood. This study examined whether orbital frontal cortex is necessary for the discrimination of face identity and facial expressions, and for appropriate behavioral responses to aggressive (threatening) facial expressions. Rhesus monkeys (Macaca mulatta) received selective lesions of orbital frontal cortex as newborns or adults. As adults, these animals were compared with sham-operated controls on their ability to discriminate between faces of individual monkeys and between different facial expressions of emotion. A passive visual paired-comparison task with standardized rhesus monkey face stimuli was designed and used to assess discrimination. In addition, looking behavior toward aggressive expressions was assessed and compared with that of normal control animals. The results showed that lesion of orbital frontal cortex (1) may impair discrimination between faces of individual monkeys, (2) does not impair facial expression discrimination, and (3) changes the amount of time spent looking at aggressive (threatening) facial expressions depending on the context. The effects of early and late lesions did not differ. Thus, orbital frontal cortex appears to be part of the neural circuitry for recognizing individuals and for modulating the response to aggression in faces, and the plasticity of the immature brain does not allow for recovery of these functions when the damage occurs early in life. This study opens new avenues for the assessment of rhesus monkey face processing and the neural basis of social cognition, and allows a better understanding of the nature of the neuropathology in patients with mental disorders that disrupt social behavior, such as autism. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity has a complex, multi-factorial etiology. Infectious agents have recently emerged as a possible contributor to the current obesity epidemic. Seven viruses have demonstrated an association with obesity in animals; however, Adenovirus-36 (Ad-36) is the only known virus associated with obesity in humans. The primary aim of this research was to determine the association between Ad-36 infection and the expression of obesity related hormones in children. Additionally, this study proposed to compare the mean three year change in the level of obesity related hormones between Ad-36 positive and negative children. This study utilized pilot data collected from 98 children at baseline and year three of the Project Heartbeat! cohort. Fasting serum samples were analyzed for the concentration of adiponectin, insulin and leptin. The crude analysis uncovered Ad-36 positive children had significantly lower mean concentrations of insulin (p=0.039) and leptin (p=0.038) at baseline compared to Ad-36 negative children. The results of the adjusted analysis indicated the leptin association with Ad-36 infection at baseline was statistically significant even after controlling for age, sex, ethnicity, and BMI percentile. The longitudinal evaluation revealed individuals with a history of Ad-36 infection experienced a larger mean decrease in adiponectin, a larger mean increase in leptin, and a smaller mean increase in insulin levels over a three year period compared to individuals without a history of infection. These results suggest Ad-36 infection may produce changes in hormone expression. The only statistically significant findings in the crude and adjusted longitudinal analysis occurred at baseline when the children were younger, suggesting physical changes that occur during sexual maturation may mask or enhance Ad-36 induced changes in hormone expression. Furthermore, the longitudinal analysis revealed the duration and course of Ad-36 infection may influence changes in the expression of obesity-related hormones. Taken together, the results of this pilot study are suggestive of an association between Ad-36 infection and the expression of obesity-related hormones.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. The purpose of this study was to investigate the association of periodontal disease with sex hormones. If periodontal disease is associated with abnormal levels of sex hormones this may indicate a link between periodontal disease and prostate cancer. ^ Methods. All participants were derived from the third National Health and Nutrition Examination survey (NHANES III) data. For the purpose of our study, serum samples for hormones measurements such as testosterone, free testosterone, estradiol, free estradiol and sex hormone binding globulin (SHBG) and periodontal examination data were available for 1,101 of these men. ^ Results. After adjusting for known risk factors, periodontal disease was significantly associated with sex hormones as testosterone, free testosterone, estradiol and free estradiol. The association of periodontal disease and sex hormone levels were not significantly different between ethnicity groups. ^ Discussion. The results indicate the need for further study of periodontal disease and serum levels of testosterone, free testosterone, estradiol and free estradiol in men.^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Primary motor cortex (M1) is involved in the production of voluntary movement and contains a complete functional representation, or map, of the skeletal musculature. This functional map can be altered by pathological experiences, such as peripheral nerve injury or stroke, by pharmacological manipulation, and by behavioral experience. The process by which experience-dependent alterations of cortical function occur is termed plasticity. In this thesis, plasticity of M1 functional organization as a consequence of behavioral experience was examined in adult primates (squirrel monkeys). Maps of movement representations were derived under anesthesia using intracortical microstimulation, whereby a microelectrode was inserted into the cortex to electrically stimulate corticospinal neurons at low current levels and evoke movements of the forelimb, principally of the hand. Movement representations were examined before and at several times after training on behavioral tasks that emphasized use of the fingers. Two behavioral tasks were utilized that dissociated the repetition of motor activity from the acquisition of motor skills. One task was easy to perform, and as such promoted repetitive motor activity without learning. The other task was more difficult, requiring the acquisition of motor skills for successful performance. Kinematic analysis indicated that monkeys used a consistent set of forelimb movements during pellet extractions. Functional mapping revealed that repetitive motor activity during the easier task did not produce plastic changes in movement representations. Instead, map plasticity, in the form of selective expansions of task-related movement representations, was only produced following skill acquisition on the difficult task. Additional studies revealed that, in general, map plasticity persisted without further training for up to three months, in parallel with the retention of task-related motor skills. Also, extensive additional training on the small well task produced further improvements in performance, and further changes in movement maps. In sum, these experiments support the following three conclusions regarding the role of M1 in motor learning. First, behaviorally-driven plasticity is learning-dependent, not activity-dependent. Second, plastic changes in M1 functional representations represent a neural correlate of acquired motor skills. Third, the persistence of map plasticity suggests that M1 is part of the neural substrate for the memory of motor skills. ^