20 resultados para White-matter Damage


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Arterial spin labeling (ASL) is a technique for noninvasively measuring cerebral perfusion using magnetic resonance imaging. Clinical applications of ASL include functional activation studies, evaluation of the effect of pharmaceuticals on perfusion, and assessment of cerebrovascular disease, stroke, and brain tumor. The use of ASL in the clinic has been limited by poor image quality when large anatomic coverage is required and the time required for data acquisition and processing. This research sought to address these difficulties by optimizing the ASL acquisition and processing schemes. To improve data acquisition, optimal acquisition parameters were determined through simulations, phantom studies and in vivo measurements. The scan time for ASL data acquisition was limited to fifteen minutes to reduce potential subject motion. A processing scheme was implemented that rapidly produced regional cerebral blood flow (rCBF) maps with minimal user input. To provide a measure of the precision of the rCBF values produced by ASL, bootstrap analysis was performed on a representative data set. The bootstrap analysis of single gray and white matter voxels yielded a coefficient of variation of 6.7% and 29% respectively, implying that the calculated rCBF value is far more precise for gray matter than white matter. Additionally, bootstrap analysis was performed to investigate the sensitivity of the rCBF data to the input parameters and provide a quantitative comparison of several existing perfusion models. This study guided the selection of the optimum perfusion quantification model for further experiments. The optimized ASL acquisition and processing schemes were evaluated with two ASL acquisitions on each of five normal subjects. The gray-to-white matter rCBF ratios for nine of the ten acquisitions were within ±10% of 2.6 and none were statistically different from 2.6, the typical ratio produced by a variety of quantitative perfusion techniques. Overall, this work produced an ASL data acquisition and processing technique for quantitative perfusion and functional activation studies, while revealing the limitations of the technique through bootstrap analysis. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) is a non-invasive technique that offers excellent soft tissue contrast for characterizing soft tissue pathologies. Diffusion tensor imaging (DTI) is an MRI technique that has shown to have the sensitivity to detect subtle pathology that is not evident on conventional MRI. ^ Rats are commonly used as animal models in characterizing the spinal cord pathologies including spinal cord injury (SCI), cancer, multiple sclerosis, etc. These pathologies could affect both thoracic and cervical regions and complete characterization of these pathologies using MRI requires DTI characterization in both the thoracic and cervical regions. Prior to the application of DTI for investigating the pathologic changes in the spinal cord, it is essential to establish DTI metrics in normal animals. ^ To date, in-vivo DTI studies of rat spinal cord have used implantable coils for high signal-to-noise ratio (SNR) and spin-echo pulse sequences for reduced geometric distortions. Implantable coils have several disadvantages including: (1) the invasive nature of implantation, (2) loss of SNR due to frequency shift with time in the longitudinal studies, and (3) difficulty in imaging the cervical region. While echo planar imaging (EPI) offers much shorter acquisition times compared to spin-echo imaging, EPI is very sensitive to static magnetic field inhomogeneities and the existing shimming techniques implemented on the MRI scanner do not perform well on spinal cord because of its geometry. ^ In this work, an integrated approach has been implemented for in-vivo DTI characterization of rat spinal cord in the thoracic and cervical regions. A three element phased array coil was developed for improved SNR and extended spatial coverage. A field-map shimming technique was developed for minimizing the geometric distortions in EPI images. Using these techniques, EPI based DWI images were acquired with optimized diffusion encoding scheme from 6 normal rats and the DTI-derived metrics were quantified. ^ The phantom studies indicated higher SNR and smaller bias in the estimated DTI metrics than the previous studies in the cervical region. In-vivo results indicated no statistical difference in the DTI characteristics of either gray matter or white matter between the thoracic and cervical regions. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Approximately 12,000 new cases of spinal cord injury (SCI) are added each year to the estimated 259,000 Americans living with SCI. The majority of these patients return to society, their lives forever changed by permanent loss of sensory and motor function. While there are no FDA approved drugs for the treatment of SCI or a universally accepted standard therapy, the current though controversial treatment includes the delivery of high dosages of the corticosteroid methyliprednisolone sodium succinate, surgical interventions to stabilize the spinal column, and physical rehabilitation. It is therefore critically important to fully understand the pathology of injury and determine novel courses and rationally-based therapies for SCI. ^ Vascular endothelial growth factor (VEGF) is an attractive target for treating central nervous system (CNS) injury and disease because it has been shown to influence angiogenesis and neuroprotection. Preliminary studies have indicated that increased vasculature may be associated with functional recovery; therefore exogenous delivery of a pro-angiogenic growth factor such as VEGF may improve neurobehavioral outcome. In addition, VEGF may provide protection from secondary injury and result in increased survival and axonal sprouting. ^ In these studies, SCI rats received acute intraspinal injections of VEGF, the antibody to VEGF, or vehicle control. The effect of these various agents was investigated using longitudinalmulti-modal magnetic resonance imaging (MRI), neuro- and sensory behavioral assays, and end point immunohistochemistry. We found that rats that received VEGF after SCI had increased tissue sparing and improved white matter integrity at the earlier time points as shown by advanced magnetic resonance imaging (MRI) techniques. However, these favorable effects of VEGF were not maintained, suggesting that additional treatments with VEGF at multiple time points may be more beneficial, Histological examinations revealed that VEGF treatment may result in increased oligodendrogenesis and therefore may eventually lead to remyelination and improved functional outcome. ^ On the neurobehavioral studies, treatments with VEGF and Anti-VEGF did not significantly affect performance on tests of open-field locomotion, grid walk, inclined plane, or rearing. However, VEGF treatment resulted in significantly increased incidence of chronic neuropathic pain. This phenomenon could possibly be attributed to the fact that VEGF treatment may promote axonal sprouting and also results in tissue sparing, thereby providing a substrate for the growth of new axons. New connections made by these sprouting axons may involve components of pathways involved in the transmission of pain and therefore result in increased pain in those animals. ^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

High Angular Resolution Diffusion Imaging (HARDI) techniques, including Diffusion Spectrum Imaging (DSI), have been proposed to resolve crossing and other complex fiber architecture in the human brain white matter. In these methods, directional information of diffusion is inferred from the peaks in the orientation distribution function (ODF). Extensive studies using histology on macaque brain, cat cerebellum, rat hippocampus and optic tracts, and bovine tongue are qualitatively in agreement with the DSI-derived ODFs and tractography. However, there are only two studies in the literature which validated the DSI results using physical phantoms and both these studies were not performed on a clinical MRI scanner. Also, the limited studies which optimized DSI in a clinical setting, did not involve a comparison against physical phantoms. Finally, there is lack of consensus on the necessary pre- and post-processing steps in DSI; and ground truth diffusion fiber phantoms are not yet standardized. Therefore, the aims of this dissertation were to design and construct novel diffusion phantoms, employ post-processing techniques in order to systematically validate and optimize (DSI)-derived fiber ODFs in the crossing regions on a clinical 3T MR scanner, and develop user-friendly software for DSI data reconstruction and analysis. Phantoms with a fixed crossing fiber configuration of two crossing fibers at 90° and 45° respectively along with a phantom with three crossing fibers at 60°, using novel hollow plastic capillaries and novel placeholders, were constructed. T2-weighted MRI results on these phantoms demonstrated high SNR, homogeneous signal, and absence of air bubbles. Also, a technique to deconvolve the response function of an individual peak from the overall ODF was implemented, in addition to other DSI post-processing steps. This technique greatly improved the angular resolution of the otherwise unresolvable peaks in a crossing fiber ODF. The effects of DSI acquisition parameters and SNR on the resultant angular accuracy of DSI on the clinical scanner were studied and quantified using the developed phantoms. With a high angular direction sampling and reasonable levels of SNR, quantification of a crossing region in the 90°, 45° and 60° phantoms resulted in a successful detection of angular information with mean ± SD of 86.93°±2.65°, 44.61°±1.6° and 60.03°±2.21° respectively, while simultaneously enhancing the ODFs in regions containing single fibers. For the applicability of these validated methodologies in DSI, improvement in ODFs and fiber tracking from known crossing fiber regions in normal human subjects were demonstrated; and an in-house software package in MATLAB which streamlines the data reconstruction and post-processing for DSI, with easy to use graphical user interface was developed. In conclusion, the phantoms developed in this dissertation offer a means of providing ground truth for validation of reconstruction and tractography algorithms of various diffusion models (including DSI). Also, the deconvolution methodology (when applied as an additional DSI post-processing step) significantly improved the angular accuracy of the ODFs obtained from DSI, and should be applicable to ODFs obtained from the other high angular resolution diffusion imaging techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is evidence that ultraviolet radiation (UVR) is increasing over certain locations on the Earth's surface. Of primary concern is the annual pattern of ozone depletion over Antarctica and the Southern Ocean. Reduction of ozone concentration selectively limits absorption of solar UV-B (290–320 nm), resulting in higher irradiance at the Earth's surface. The effects of ozone depletion on the human population and natural ecosystems, particularly the marine environment, are a matter of considerable concern. Indeed, marine plankton may serve as sensitive indicators of ozone depletion and UV-B fluctuations. Direct biological effects of UVR result from absorption of UV-B by DNA. Once absorbed, energy is dissipated by a variety of pathways, including covalent chemical reactions leading to the formation of photoproducts. The major types of photoproduct formed are cyclobutyl pyrimidine dimer (CPD) and pyrimidine(6-4)pyrimidone dimer [(6-4)PD]. Marine plankton repair these photoproducts using light-dependent photoenzymatic repair or nucleotide excision repair. The studies here show that fluctuations in CPD concentrations in the marine environment at Palmer Station, Antarctica correlate well with ozone concentration and UV-B irradiance at the Earth's surface. A comparison of photoproduct levels in marine plankton and DNA dosimeters show that bacterioplankton display higher resistance to solar UVR than phytoplankton in an ozone depleted environment. DNA damage in marine microorganisms was investigated during two separate latitudinal transects which covered a total range of 140°. We observed the same pattern of change in DNA damage levels in dosimeters and marine plankton as measured using two distinct quantitative techniques. Results from the transects show that differences in photosensitivity exist in marine plankton collected under varying UVR environments. Laboratory studies of Antarctic bacterial isolates confirm that marine bacterioplankton possess differences in survival, DNA damage induction, and repair following exposure to UVR. Results from DNA damage measurements during ozone season, along a latitudinal gradient, and in marine bacterial isolates suggest that changes in environmental UVR correlate with changes in UV-B induced DNA damage in marine microorganisms. Differences in the ability to tolerate UVR stress under different environmental conditions may determine the composition of the microbial communities inhabiting those environments. ^